English

log ( 1 √ x ) + 5 x a − 3 a x + 3 √ x 2 + 6 4 √ x − 3 - Mathematics

Advertisements
Advertisements

Question

\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 

Solution

\[\frac{d}{dx}\left( \log \left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}} \right)\]
\[ = \frac{d}{dx}\left[ log \left( x^\frac{- 1}{2} \right) \right] + 5\frac{d}{dx}\left( x^a \right) - 3\frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^\frac{2}{3} \right) + 6\frac{d}{dx}\left( x^\frac{- 3}{4} \right)\]
\[ = \frac{d}{dx}\left( \frac{- 1}{2}\log x \right) + 5\frac{d}{dx}\left( x^a \right) - 3\frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^\frac{2}{3} \right) + 6\frac{d}{dx}\left( x^\frac{- 3}{4} \right)\]
\[ = \frac{- 1}{2} . \frac{1}{x} + 5a x^{a - 1} - 3 a^x \log a + \frac{2}{3} x^\frac{- 1}{3} + 6\left( \frac{- 3}{4} \right) x^\frac{- 7}{4} \]
\[ = \frac{- 1}{2x} + 5a x^{a - 1} - 3 a^x \log a + \frac{2}{3} x^\frac{- 1}{3} - \frac{9}{2} x^\frac{- 7}{4} \]
\[\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.3 [Page 34]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.3 | Q 16 | Page 34

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2x - 3/4`


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x + 1}{x + 2}\]


 x2 + x + 3


\[\frac{2x + 3}{x - 2}\] 


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\sqrt{\tan x}\]


\[\sin \sqrt{2x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


ex log a + ea long x + ea log a


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(x3 + x2 + 1) sin 


x5 ex + x6 log 


logx2 x


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×