Advertisements
Advertisements
Question
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
Solution
\[ = \frac{d}{dx}\left[ log \left( x^\frac{- 1}{2} \right) \right] + 5\frac{d}{dx}\left( x^a \right) - 3\frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^\frac{2}{3} \right) + 6\frac{d}{dx}\left( x^\frac{- 3}{4} \right)\]
\[ = \frac{d}{dx}\left( \frac{- 1}{2}\log x \right) + 5\frac{d}{dx}\left( x^a \right) - 3\frac{d}{dx}\left( a^x \right) + \frac{d}{dx}\left( x^\frac{2}{3} \right) + 6\frac{d}{dx}\left( x^\frac{- 3}{4} \right)\]
\[ = \frac{- 1}{2} . \frac{1}{x} + 5a x^{a - 1} - 3 a^x \log a + \frac{2}{3} x^\frac{- 1}{3} + 6\left( \frac{- 3}{4} \right) x^\frac{- 7}{4} \]
\[ = \frac{- 1}{2x} + 5a x^{a - 1} - 3 a^x \log a + \frac{2}{3} x^\frac{- 1}{3} - \frac{9}{2} x^\frac{- 7}{4} \]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of 99x at x = 100.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2x - 3/4`
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{x + 1}{x + 2}\]
x2 + x + 3
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
ex log a + ea long x + ea log a
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
(x3 + x2 + 1) sin x
x5 ex + x6 log x
logx2 x
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is