Advertisements
Advertisements
Question
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Options
1
\[\frac{1}{2}\]
\[\frac{1}{\sqrt{2}}\]
0
Solution
\[y = \sqrt{x} + \frac{1}{\sqrt{x}}\]
\[ = x^\frac{1}{2} + x^{- \frac{1}{2}}\]
Differentiating both sides with respect to x, we get
\[\frac{dy}{dx} = \frac{d}{dx}\left( x^\frac{1}{2} + x^{- \frac{1}{2}} \right)\]
\[ = \frac{d}{dx}\left( x^\frac{1}{2} \right) + \frac{d}{dx}\left( x^{- \frac{1}{2}} \right)\]
\[ = \frac{1}{2} x^\frac{1}{2} - 1 + \left( - \frac{1}{2} \right) x^{- \frac{1}{2} - 1} \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right)\]
\[ = \frac{1}{2} x^{- \frac{1}{2}} - \frac{1}{2} x^{- \frac{3}{2}}\]
Putting x = 1, we get
\[\left( \frac{dy}{dx} \right)_{x = 1} = \frac{1}{2} \times 1 - \frac{1}{2} \times 1 = 0\]
Thus, \[\frac{dy}{dx}\] 1 is 0.
Hence, the correct answer is option (d).
APPEARS IN
RELATED QUESTIONS
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{x^3}\]
k xn
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
− x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 sin x
\[\cos \sqrt{x}\]
x4 − 2 sin x + 3 cos x
log3 x + 3 loge x + 2 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
sin x cos x
(x sin x + cos x ) (ex + x2 log x)
(1 +x2) cos x
logx2 x
x3 ex cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x + \cos x}{\tan x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.