English

Mark the Correct Alternative in of the Following: If Y = √ X + 1 √ X Then D Y D X at X = 1 is - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is

Options

  •  1   

  • \[\frac{1}{2}\] 

  • \[\frac{1}{\sqrt{2}}\]

  • 0

MCQ

Solution

\[y = \sqrt{x} + \frac{1}{\sqrt{x}}\]
\[ = x^\frac{1}{2} + x^{- \frac{1}{2}}\] 

Differentiating both sides with respect to x, we get 

\[\frac{dy}{dx} = \frac{d}{dx}\left( x^\frac{1}{2} + x^{- \frac{1}{2}} \right)\]
\[ = \frac{d}{dx}\left( x^\frac{1}{2} \right) + \frac{d}{dx}\left( x^{- \frac{1}{2}} \right)\]
\[ = \frac{1}{2} x^\frac{1}{2} - 1 + \left( - \frac{1}{2} \right) x^{- \frac{1}{2} - 1} \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right)\]
\[ = \frac{1}{2} x^{- \frac{1}{2}} - \frac{1}{2} x^{- \frac{3}{2}}\]

Putting x = 1, we get

\[\left( \frac{dy}{dx} \right)_{x = 1} = \frac{1}{2} \times 1 - \frac{1}{2} \times 1 = 0\]

Thus, \[\frac{dy}{dx}\] 1 is 0.
Hence, the correct answer is option (d).

 

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.7 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.7 | Q 6 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{x^3}\]


k xn


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle: 

− x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


\[\cos \sqrt{x}\]


x4 − 2 sin x + 3 cos x


 log3 x + 3 loge x + 2 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


sin x cos x


(x sin x + cos x ) (ex + x2 log x


(1 +x2) cos x


logx2 x


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x + \cos x}{\tan x}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×