Advertisements
Advertisements
Question
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Solution
\[\sqrt{\frac{1 + \cos 2x}{2}}\]
\[ = \sqrt{\frac{2 \cos^2 x}{2}}\]
\[ = \sqrt{\cos^2 x}\]
\[ = - \cos x (\because\frac{\pi}{2}<x<\pi)\]
\[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
\[ = \frac{d}{dx}\left( - \cos x \right)\]
\[ = - \left( - \sin x \right)\]
\[ = \sin x\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x at x = 1.
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{2}{x}\]
\[\frac{x^2 - 1}{x}\]
x2 + x + 3
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
x cos x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\cos \sqrt{x}\]
log3 x + 3 loge x + 2 tan x
x2 ex log x
sin2 x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x5 (3 − 6x−9)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]