Advertisements
Advertisements
Question
sin2 x
Solution
\[\frac{d}{dx}\left( \sin^2 x \right)\]
\[ = 2 \sin x \frac{d}{dx}\left( \sin x \right) (\text{ Using the chain rule })\]
\[ = 2 \sin x \cos x\]
\[ = \sin 2x\]
APPEARS IN
RELATED QUESTIONS
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of f (x) = 99x at x = 100
x2 + x + 3
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 sin x
(2x2 + 1) (3x + 2)
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
x2 ex log x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x) (x cos x − sin x)
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x−4 (3 − 4x−5)
x−3 (5 + 3x)
(ax + b)n (cx + d)n
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x^5 - \cos x}{\sin x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of 2x4 + x.
`(a + b sin x)/(c + d cos x)`