English

If F (X) = |X| + |X−1|, Write the Value of D D X ( F ( X ) ) - Mathematics

Advertisements
Advertisements

Question

If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]

Solution

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right|\]
\[\text{ Case }1: x<0 (\therefore x-1<-1<0)\]
\[\left| x \right| = - x; \left| x - 1 \right| = - \left( x - 1 \right) = - x + 1\]
\[f\left( x \right) = - x + \left( - x + 1 \right) = - 2x\]
\[f'\left( x \right) = - 2\]
\[\text{ Case } 2: 0< x <1 (\therefore x>0 \text{ and } x-1<0)\]
\[\left| x \right| = x; \left| x - 1 \right| = - \left( x - 1 \right) = 1 - x\]
\[f\left( x \right) = x + 1 - x = 1\]
\[f'\left( x \right) = 0\]
\[\text{ Case } 3: x>1 \therefore x>1>0 \Rightarrow x>0)\]
\[\left| x \right| = x; \left| x - 1 \right| = x - 1\]
\[f\left( x \right) = x + x - 1 = 2x - 1\]
\[f'\left( x \right) = 2\]

\[f'(x)=\begin{cases}-2, \text{When } x < 0 \\0, \text{When }0 < x <1\\2, \text{When } x >1 \end{cases}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.6 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.6 | Q 7 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


\[\frac{1}{\sqrt{x}}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


x4 − 2 sin x + 3 cos x


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


xn tan 


(x3 + x2 + 1) sin 


(x sin x + cos x) (x cos x − sin x


logx2 x


\[e^x \log \sqrt{x} \tan x\] 


(2x2 − 3) sin 


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


(ax + b)n (cx d)


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Find the derivative of x2 cosx.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×