English

(X Sin X + Cos X) (X Cos X − Sin X) - Mathematics

Advertisements
Advertisements

Question

(x sin x + cos x) (x cos x − sin x

Solution

\[u = x \sin x + \cos x; v = x \cos x - \sin x\]
\[u' = x \cos x + \sin x - \sin x = x \cos x ; v' = - x \sin x + \cos x - \cos x = - x \sin x\]
\[ \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ \left( x \sin x + \cos x \right)\left( x \cos x - \sin x \right) \right] = \left( x \sin x + \cos x \right)\left( - x \sin x \right) + \left( x \cos x - \sin x \right)\left( x \cos x \right)\]
\[ = - x^2 \sin^2 x - x \cos x \sin x + x^2 \cos^2 x - x \cos x \sin x \]
\[ = x^2 \left( \cos^2 x - \sin^2 x \right) - x\left( 2 \sin x \cos x \right)\]
\[ = x^2 \cos \left( 2x \right) - x\left( \sin \left( 2x \right) \right)\]
\[ = x \left[ x \cos \left( 2x \right) - \sin \left( 2x \right) \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.4 | Q 11 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


k xn


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


 tan 2


\[\tan \sqrt{x}\] 


x4 − 2 sin x + 3 cos x


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x2 ex log 


(x3 + x2 + 1) sin 


x−3 (5 + 3x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×