English

X−3 (5 + 3x) - Mathematics

Advertisements
Advertisements

Question

x−3 (5 + 3x

Solution

\[\text{ Let } u = x^{- 3} ; v = \left( 5 + 3x \right)\]
\[\text{ Then }, u = - 3 x^{- 4} ; v' = 3\]
\[\text{ Using the product rule } :\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ x^3 \left( 5 + 3x \right) \right] = x^{- 3} . 3 + \left( 5 + 3x \right) \left( - 3 x^{- 4} \right)\]
\[ = 3 x^{- 3} - 15 x^{- 4} - 9 x^{- 3} \]
\[ = - 15 x^{- 4} - 6 x^{- 3}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.4 | Q 24 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x + 2}{3x + 5}\]


k xn


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle:

x2 e


\[\cos \sqrt{x}\]


x4 − 2 sin x + 3 cos x


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


(x3 + x2 + 1) sin 


x4 (3 − 4x−5)


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{{10}^x}{\sin x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×