English

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): 4x-2 - Mathematics

Advertisements
Advertisements

Question

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`

Sum

Solution

`d/dx 4sqrtx - 2 = d/dx (4x^(1/2) - 2)`

= `4 xx 1/2 x^(1/2 - 1) - 0`

= `2/sqrtx`

shaalaa.com
  Is there an error in this question or solution?
Chapter 13: Limits and Derivatives - Miscellaneous Exercise [Page 317]

APPEARS IN

NCERT Mathematics [English] Class 11
Chapter 13 Limits and Derivatives
Miscellaneous Exercise | Q 11 | Page 317

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of 99x at x = 100.


Find the derivative of `2x - 3/4`


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


\[\frac{2}{x}\]


\[\frac{1}{x^3}\]


\[\frac{x + 2}{3x + 5}\]


 (x2 + 1) (x − 5)


tan2 


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


 log3 x + 3 loge x + 2 tan x


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×