English

Mark the correct alternative in of the following: If f ( x ) = 1 − x + x 2 − x 3 + . . . − x 99 + x 100 then f ′ ( 1 ) - Mathematics

Advertisements
Advertisements

Question

Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 

Options

  •  150       

  • −50                   

  • −150            

  • 50 

MCQ

Solution

\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\] 

Differentiating both sides with respect to x, we get

\[f'\left( x \right) = \frac{d}{dx}\left( 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) - \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( x^2 \right) - \frac{d}{dx}\left( x^3 \right) + . . . - \frac{d}{dx}\left( x^{99} \right) + \frac{d}{dx}\left( x^{100} \right)\]
\[ = 0 - 1 + 2x - 3 x^2 + . . . - 99 x^{98} + 100 x^{99} \]
\[ = - 1 + 2x - 3 x^2 + . . . - 99 x^{98} + 100 x^{99}\]

Putting x = 1, we get

\[f'\left( 1 \right) = - 1 + 2 - 3 + . . . - 99 + 100\]
\[ = \left( - 1 + 2 \right) + \left( - 3 + 4 \right) + \left( - 5 + 6 \right) + . . . + \left( - 99 + 100 \right)\]
\[ = 1 + 1 + 1 + . . . + 1 \left( 50 \text{ terms } \right)\]
\[ = 50\]

Hence, the correct answer is option (d).

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.7 [Page 48]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.7 | Q 4 | Page 48

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = 3x at x = 2 


\[\frac{1}{\sqrt{x}}\]


k xn


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


\[\cos \sqrt{x}\]


ex log a + ea long x + ea log a


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


xn loga 


(x3 + x2 + 1) sin 


(x sin x + cos x) (x cos x − sin x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


(ax + b)n (cx d)


\[\frac{x}{1 + \tan x}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x}{\sin^n x}\]


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×