Advertisements
Advertisements
Question
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Options
150
−50
−150
50
Solution
\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]
Differentiating both sides with respect to x, we get
\[f'\left( x \right) = \frac{d}{dx}\left( 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) - \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( x^2 \right) - \frac{d}{dx}\left( x^3 \right) + . . . - \frac{d}{dx}\left( x^{99} \right) + \frac{d}{dx}\left( x^{100} \right)\]
\[ = 0 - 1 + 2x - 3 x^2 + . . . - 99 x^{98} + 100 x^{99} \]
\[ = - 1 + 2x - 3 x^2 + . . . - 99 x^{98} + 100 x^{99}\]
Putting x = 1, we get
\[f'\left( 1 \right) = - 1 + 2 - 3 + . . . - 99 + 100\]
\[ = \left( - 1 + 2 \right) + \left( - 3 + 4 \right) + \left( - 5 + 6 \right) + . . . + \left( - 99 + 100 \right)\]
\[ = 1 + 1 + 1 + . . . + 1 \left( 50 \text{ terms } \right)\]
\[ = 50\]
Hence, the correct answer is option (d).
APPEARS IN
RELATED QUESTIONS
Find the derivative of x at x = 1.
Find the derivative of x–3 (5 + 3x).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of f (x) = 3x at x = 2
\[\frac{1}{\sqrt{x}}\]
k xn
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\cos \sqrt{x}\]
ex log a + ea long x + ea log a
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
xn loga x
(x3 + x2 + 1) sin x
(x sin x + cos x) (x cos x − sin x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b)n (cx + d)n
\[\frac{x}{1 + \tan x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{\sin^n x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.