English

If |X| < 1 and Y = 1 + X + X2 + X3 + ..., Then Write the Value of D Y D X - Mathematics

Advertisements
Advertisements

Question

If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 

Solution

The given series is a geometric series where a = 1 and r = x. 

\[f\left( x \right) = 1 + x + x^2 + x^3 + . . . = \frac{1}{1 - x}\]
\[\left( \text{ Sum of the infinite series of a geometric series is }\frac{a}{1 - r}. \right)\]
\[f'\left( x \right) = \frac{- 1}{(1 - x )^2}\frac{d}{dx}(1 - x)\]
\[ = \frac{- 1}{(1 - x )^2}( - 1)\]
\[ = \frac{1}{(1 - x )^2}\] 

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.6 [Page 47]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.6 | Q 13 | Page 47

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


\[\frac{x + 1}{x + 2}\]


k xn


 x2 + x + 3


\[\sqrt{2 x^2 + 1}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 x sin x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


cos (x + a)


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


(x sin x + cos x ) (ex + x2 log x


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{a + b \sin x}{c + d \cos x}\] 


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×