English

Differentiate Each of the Following Functions by the Product Rule and the Other Method and Verify that Answer from Both the Methods is the Same. (3 Sec X − 4 Cosec X) (−2 Sin X + 5 Cos X) - Mathematics

Advertisements
Advertisements

Question

Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)

Solution

 Product rule (1st method ):
 Let u=3secx4cosecx;v=2sinx+5cosx
 Then ,u=3secxtanx+4cosecxcotx;v=2cosx5sinx
 Using the product rule :
ddx(uv)=uv+vu
ddx[(3secx4cosecx)(2sinx+5cosx)]=(3secx4\cosecx)(2cosx5sinx)+(2sinx+5cosx)(3secxtanx+4\cosecxcotx)
=6+15tanx+8cotx+206tan2x8cotx15tanx+20cot2x
=6+206(sec2x1)+20(cosec2x1)
=6+206sec2x+6+20cosec2x20
=6sec2x+20cosec2x
2ndmethod:
ddx[(3secx4cosecx)(2sinx+5cosx)]=ddx(6secxsinx+15secxcosx+8cosecxsinx20cosecxcosx)
=ddx(6sinxcosx+15cosxcosx+8sinxsinx20cosxsinx)
=ddx(6tanx+15+820cotx)
=ddx(6tanx20cotx+23)
=6sec2x+20cosec2x
 Using both the methods, we get the same answer .

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.4 [Page 39]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.4 | Q 26.3 | Page 39

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

1ax2+bx+c


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosx1+sinx


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin(x+a)cosx


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =π2

 


2x


x+1x+2


k xn


13x


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

cos(xπ8)


Differentiate each of the following from first principle:

sin(3x+1)


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

ax


tanx


x4 − 2 sin x + 3 cos x


acosx+bsinx+csinx


1sinx+2x+3+4logx3 


 If y=2x9357x7+6x3x, find dydxatx=1. 


For the function f(x)=x100100+x9999+...+x22+x+1.

 

x2 ex log 


xn loga 


2xcotxx 


exlogxtanx 


x4 (3 − 4x−5)


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


xtanxsecx+tanx


sinxxcosxxsinx+cosx


1+3x13x


1ax2+bx+c 


If x < 2, then write the value of ddx(x24x+4) 


If f (x) = |x| + |x−1|, write the value of ddx(f(x))


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.