English

Differentiate of the Following from First Principle: Cos ( X − π 8 ) - Mathematics

Advertisements
Advertisements

Question

Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]

Solution

\[\frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( \cos \left( x - \frac{\pi}{8} \right) \right) = \lim_{h \to 0} \frac{\cos \left( x + h - \frac{\pi}{8} \right) - \cos \left( x - \frac{\pi}{8} \right)}{h}\]
\[We know:\]
\[\cos C - \cos D = - 2 \sin \left( \frac{C + D}{2} \right) \sin \left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{- 2 \sin \left( \frac{x + h - \frac{\pi}{8} + x - \frac{\pi}{8}}{2} \right) \sin \left( \frac{x + h - \frac{\pi}{8} - x + \frac{\pi}{8}}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{- 2 \sin \left( \frac{2x + h - \frac{\pi}{4}}{2} \right) \sin \left( \frac{h}{2} \right)}{h}\]
\[ = - 2 \lim_{h \to 0} \sin \left( \frac{2x + h - \frac{\pi}{4}}{2} \right) \lim_{h \to 0} \frac{\sin \left( \frac{h}{2} \right)}{\frac{h}{2}} \times \frac{1}{2}\]
\[ = - 2 \sin \left( x - \frac{\pi}{8} \right) \times \frac{1}{2}\]
\[ = - \sin \left( x - \frac{\pi}{8} \right)\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 25]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 2.08 | Page 25

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of (x) = tan x at x = 0 


k xn


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


x4 − 2 sin x + 3 cos x


\[\frac{( x^3 + 1)(x - 2)}{x^2}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


xn tan 


(x3 + x2 + 1) sin 


(x sin x + cos x ) (ex + x2 log x


x3 ex cos 


x4 (3 − 4x−5)


(ax + b) (a + d)2


(ax + b)n (cx d)


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×