Advertisements
Advertisements
Question
\[\frac{x}{1 + \tan x}\]
Solution
\[\text{ Let } u = x; v = 1 + \tan x\]
\[\text{ Then }, u' = 1; v' = \sec^2 x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x}{1 + \tan x} \right) = \frac{\left( 1 + \tan x \right)1 - x \sec^2 x}{\left( 1 + \tan x \right)^2}\]
\[ = \frac{1 + \tan x - x \sec^2 x}{\left( 1 + \tan x \right)^2}\]
\[\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of x–3 (5 + 3x).
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = x2 − 2 at x = 10
\[\frac{x^2 - 1}{x}\]
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\sqrt{\tan x}\]
x4 − 2 sin x + 3 cos x
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
(2x2 + 1) (3x + 2)
log3 x + 3 loge x + 2 tan x
\[\frac{2 x^2 + 3x + 4}{x}\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x3 sin x
(x3 + x2 + 1) sin x
x5 ex + x6 log x
sin2 x
logx2 x
(2x2 − 3) sin x
(ax + b)n (cx + d)n
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x}{1 + x^2}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
`(a + b sin x)/(c + d cos x)`