English

e x 1 + x 2 - Mathematics

Advertisements
Advertisements

Question

\[\frac{e^x}{1 + x^2}\] 

Solution

\[\text{ Let } u = e^x ; v = 1 + x^2 \]
\[\text{ Then }, u' = e^x ; v' = 2x\]
\[\text{ Using the chain rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{e^x}{1 + x^2} \right) = \frac{\left( 1 + x^2 \right) e^x - e^x \left( 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x + x^2 e^x - 2x e^x}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 + x^2 - 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2}\]
\[\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.5 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.5 | Q 8 | Page 44

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


\[\frac{x + 2}{3x + 5}\]


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


 tan 2


\[\tan \sqrt{x}\]


(2x2 + 1) (3x + 2) 


 log3 x + 3 loge x + 2 tan x


\[\frac{2 x^2 + 3x + 4}{x}\] 


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


xn tan 


xn loga 


x2 sin x log 


x5 ex + x6 log 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{x}{\sin^n x}\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×