English

tan √ x - Mathematics

Advertisements
Advertisements

Question

\[\tan \sqrt{x}\]

Solution

\[Let f(x) = \tan\sqrt{x}\]
\[\text{ Thus, we have }: \]
\[(x + h) = \tan\sqrt{x + h}\]
\[\frac{d}{dx}(f(x)) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\]
\[ = \lim_{h \to 0} \frac{\tan\sqrt{x + h} - \tan\sqrt{x}}{h}\]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{h \cos\sqrt{x + h} \cos \sqrt{x}} \left[ \because \tan A - \tan B = \frac{\sin(A - B)}{\cos A \cos B} \right] \]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( x + h - x \right) \cos\sqrt{x + h} \cos \sqrt{x}} \]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)\left( \sqrt{x + h} - \sqrt{x} \right)\cos\sqrt{x + h} \cos \sqrt{x}}\]
\[ = \lim_{h \to 0} \frac{\sin \left( \sqrt{x + h} - \sqrt{x} \right)}{\left( \sqrt{x + h} - \sqrt{x} \right)} . \lim_{h \to 0} \frac{1}{\left( \sqrt{x + h} + \sqrt{x} \right)\cos\sqrt{x + h}\cos\sqrt{x}} \left[ \because \lim_{h \to 0} \frac{\sin\left( \sqrt{x + h} - \sqrt{x} \right)}{\sqrt{x + h} - \sqrt{x}} = 1 \right]\]
\[ = 1 \times \frac{1}{2\sqrt{x}\cos\sqrt{x}\cos\sqrt{x}}\]
\[ = \frac{1}{2\sqrt{x}} \sec^2 \sqrt{x}\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 30: Derivatives - Exercise 30.2 [Page 26]

APPEARS IN

RD Sharma Mathematics [English] Class 11
Chapter 30 Derivatives
Exercise 30.2 | Q 5.3 | Page 26

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of x5 (3 – 6x–9).


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x + 2}{3x + 5}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

x2 e


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan2 


\[\sin \sqrt{2x}\]


\[\cos \sqrt{x}\]


3x + x3 + 33


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


x2 ex log 


xn tan 


sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


logx2 x


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×