Advertisements
Advertisements
Question
\[\frac{x + 2}{3x + 5}\]
Solution
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 2}{3\left( x + h \right) + 5} - \frac{x + 2}{3x + 5}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 2}{3x + 3h + 5} - \frac{x + 2}{3x + 5}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 \right)\left( 3x + 5 \right) - \left( 3x + 3h + 5 \right)\left( x + 2 \right)}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{3 x^2 + 3xh + 6x + 5x + 5h + 10 - 3 x^2 - 3xh - 5x - 6x - 6h - 10}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{- h}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{- 1}{\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \frac{- 1}{\left( 3x + 5 \right)^2}\]
APPEARS IN
RELATED QUESTIONS
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate each of the following from first principle:
e−x
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
ex log a + ea long x + ea log a
x3 ex
sin2 x
x4 (5 sin x − 3 cos x)
x−3 (5 + 3x)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.