हिंदी

X + 2 3 X + 5 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x + 2}{3x + 5}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 2}{3\left( x + h \right) + 5} - \frac{x + 2}{3x + 5}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x + h + 2}{3x + 3h + 5} - \frac{x + 2}{3x + 5}}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 \right)\left( 3x + 5 \right) - \left( 3x + 3h + 5 \right)\left( x + 2 \right)}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{3 x^2 + 3xh + 6x + 5x + 5h + 10 - 3 x^2 - 3xh - 5x - 6x - 6h - 10}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{- h}{h\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \lim_{h \to 0} \frac{- 1}{\left( 3x + 3h + 5 \right)\left( 3x + 5 \right)}\]
\[ = \frac{- 1}{\left( 3x + 5 \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 1.07 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


k xn


(x + 2)3


\[\frac{2x + 3}{x - 2}\] 


x ex


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[3^{x^2}\]


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


ex log a + ea long x + ea log a


 log3 x + 3 loge x + 2 tan x


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


cos (x + a)


x3 sin 


x3 e


xn loga 


(1 − 2 tan x) (5 + 4 sin x)


logx2 x


\[e^x \log \sqrt{x} \tan x\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×