Advertisements
Advertisements
प्रश्न
log3 x + 3 loge x + 2 tan x
उत्तर
\[\frac{d}{dx}\left( \log_3 x + 3 \log_e x + 2 \tan x \right)\]
\[ = \frac{d}{dx}\left( \frac{\log x}{\log 3} \right) + 3\frac{d}{dx}\left( \log_e x \right) + 2\frac{d}{dx}\left( \tan x \right)\]
\[ = \frac{1}{\log 3} . \frac{1}{x} + 3 . \frac{1}{x} + 2 \sec^2 x\]
\[ = \frac{1}{x \log 3} + \frac{3}{x} + 2 \sec^2 x\]
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
(2x2 + 1) (3x + 2)
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
2 sec x + 3 cot x − 4 tan x
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
xn tan x
sin x cos x
(x sin x + cos x) (x cos x − sin x)
sin2 x
logx2 x
x3 ex cos x
x4 (5 sin x − 3 cos x)
(2x2 − 3) sin x
x5 (3 − 6x−9)
(ax + b)n (cx + d)n
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]