हिंदी

Find the derivative of x5 (3 – 6x–9). - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of x5 (3 – 6x–9).

योग

उत्तर

Let f (x) = x5 (3 – 6x–9)

By Leibnitz product rule,

f'(x) = `x^5 d/(dx) (3 - 6x^-9) + (3 - 6x^-9) d/(dx) (x^5)`

= x5 {0 - 6(-9)x-9-1} + (3 - 6x-9)(5x4)

= x5 (54x-10) + 15x4 - 30x-5

= 54x-5 + 15x4 - 30x-5

= 24x-5 + 15x4

= `15x^4 + 24/x^5`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Exercise 13.2 [पृष्ठ ३१३]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Exercise 13.2 | Q 9.4 | पृष्ठ ३१३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of f (x) = cos x at x = 0


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x^2 + 1}{x}\]


 (x2 + 1) (x − 5)


\[\sqrt{2 x^2 + 1}\]


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan2 


 tan 2


\[\sin \sqrt{2x}\]


 log3 x + 3 loge x + 2 tan x


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


(x sin x + cos x ) (ex + x2 log x


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x5 (3 − 6x−9


x−3 (5 + 3x


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{ax + b}{p x^2 + qx + r}\] 


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of x2 cosx.


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×