Advertisements
Advertisements
प्रश्न
x5 (3 − 6x−9)
उत्तर
\[\text{ Let } u = x^5 ; v = \left( 3 - 6 x^{- 9} \right)\]
\[\text{ Then }, u' = 5 x^4 ; v' = 54 x^{- 10} \]
\[\text{ Using theproduct rule }:\]
\[\frac{d}{dx}\left( uv \right) = uv' + vu'\]
\[\frac{d}{dx}\left[ x^5 \left( 3 - 6 x^{- 9} \right) \right] = x^5 \left( 54 x^{- 10} \right) + \left( 3 - 6 x^{- 9} \right)\left( 5 x^4 \right)\]
\[ = 54 x^{- 5} + 15 x^4 - 30 x^{- 5} \]
\[ = 15 x^4 + 24 x^{- 5}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
x2 + x + 3
x ex
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
\[\sqrt{\tan x}\]
3x + x3 + 33
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
cos (x + a)
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x3 ex
(x3 + x2 + 1) sin x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
logx2 x
(ax + b)n (cx + d)n
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of f(x) = tan(ax + b), by first principle.