हिंदी

2 X Cot X √ X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{2^x \cot x}{\sqrt{x}}\] 

उत्तर

\[\frac{2^x \cot x}{\sqrt{x}} = 2^x \cot x \left( x^\frac{- 1}{2} \right)\]
\[\text{ Let } u = 2^x ; v = \cot x; w = x^\frac{- 1}{2} \]
\[\text{ Then }, u' = 2^x \log 2; v' = - {cosec}^2 x; w' = \frac{- 1}{2} x^\frac{- 3}{2} \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[\frac{d}{dx}\left[ 2^x \cot x \left( x^\frac{- 1}{2} \right) \right] = 2^x \log 2 . \cot x . x^\frac{- 1}{2} + 2^x \left( - {cosec}^2 x \right) x^\frac{- 1}{2} + 2^x \cot x\left( \frac{- 1}{2} x^\frac{- 3}{2} \right)\]
\[ = 2^x \log 2 . \cot x . \frac{1}{\sqrt{x}} + 2^x \left( - {cosec}^2 x \right)\frac{1}{\sqrt{x}} + 2^x \cot x\left( \frac{- 1}{2x\sqrt{x}} \right)\]
\[ = \frac{2^x}{\sqrt{x}}\left( \log 2 . \cot x - {cosec}^2 x - \frac{\cot x}{2x} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.4 [पृष्ठ ३९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.4 | Q 8 | पृष्ठ ३९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


\[\frac{x^2 + 1}{x}\]


\[\frac{x + 1}{x + 2}\]


k xn


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


sin x cos x


x5 ex + x6 log 


logx2 x


\[e^x \log \sqrt{x} \tan x\] 


x3 ex cos 


x5 (3 − 6x−9


x4 (3 − 4x−5)


\[\frac{e^x}{1 + x^2}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×