Advertisements
Advertisements
प्रश्न
\[\frac{2^x \cot x}{\sqrt{x}}\]
उत्तर
\[\frac{2^x \cot x}{\sqrt{x}} = 2^x \cot x \left( x^\frac{- 1}{2} \right)\]
\[\text{ Let } u = 2^x ; v = \cot x; w = x^\frac{- 1}{2} \]
\[\text{ Then }, u' = 2^x \log 2; v' = - {cosec}^2 x; w' = \frac{- 1}{2} x^\frac{- 3}{2} \]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[\frac{d}{dx}\left[ 2^x \cot x \left( x^\frac{- 1}{2} \right) \right] = 2^x \log 2 . \cot x . x^\frac{- 1}{2} + 2^x \left( - {cosec}^2 x \right) x^\frac{- 1}{2} + 2^x \cot x\left( \frac{- 1}{2} x^\frac{- 3}{2} \right)\]
\[ = 2^x \log 2 . \cot x . \frac{1}{\sqrt{x}} + 2^x \left( - {cosec}^2 x \right)\frac{1}{\sqrt{x}} + 2^x \cot x\left( \frac{- 1}{2x\sqrt{x}} \right)\]
\[ = \frac{2^x}{\sqrt{x}}\left( \log 2 . \cot x - {cosec}^2 x - \frac{\cot x}{2x} \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
\[\frac{x^2 + 1}{x}\]
\[\frac{x + 1}{x + 2}\]
k xn
Differentiate of the following from first principle:
eax + b
x ex
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
sin x cos x
x5 ex + x6 log x
logx2 x
\[e^x \log \sqrt{x} \tan x\]
x3 ex cos x
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
\[\frac{e^x}{1 + x^2}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]