Advertisements
Advertisements
प्रश्न
x2 sin x log x
उत्तर
\[\text{ Let } u = x^2 ; v = \sin x; w = \log x\]
\[\text{ Then }, u' = 2x; v' = \cos x; w' = \frac{1}{x}\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[\frac{d}{dx}\left( x^2 \sin x \log x \right) = 2x \sin x \log x + x^2 \cos x \log x + x^2 \sin x . \frac{1}{x}\]
\[ = 2x \sin x \log x + x^2 \cos x \log x + x \sin x\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
(x + 2)3
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\sin \sqrt{2x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
(x3 + x2 + 1) sin x
(1 − 2 tan x) (5 + 4 sin x)
x3 ex cos x
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.