Advertisements
Advertisements
प्रश्न
(x + 2)3
उत्तर
\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 \right)^3 - \left( x + 2 \right)^3}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 - x - 2 \right)\left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]}{h}\]
\[ = \lim_{h \to 0} \frac{h\left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]}{h}\]
\[ = \lim_{h \to 0} \left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]\]
\[ = \left[ \left( x + 0 + 2 \right)^2 + \left( x + 0 + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]\]
\[ = \left( x + 2 \right)^2 + \left( x + 2 \right)^2 + \left( x + 2 \right)^2 \]
\[ = 3 \left( x + 2 \right)^2\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = tan x at x = 0
k xn
\[\frac{1}{\sqrt{3 - x}}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
eax + b
x ex
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
x2 sin x
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
x3 sin x
xn tan x
(1 − 2 tan x) (5 + 4 sin x)
sin2 x
\[e^x \log \sqrt{x} \tan x\]
(2x2 − 3) sin x
x−4 (3 − 4x−5)
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{1 + \log x}{1 - \log x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.