हिंदी

(X + 2)3 - Mathematics

Advertisements
Advertisements

प्रश्न

(x + 2)3

उत्तर

\[\frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 \right)^3 - \left( x + 2 \right)^3}{h}\]
\[ = \lim_{h \to 0} \frac{\left( x + h + 2 - x - 2 \right)\left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]}{h}\]
\[ = \lim_{h \to 0} \frac{h\left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]}{h}\]
\[ = \lim_{h \to 0} \left[ \left( x + h + 2 \right)^2 + \left( x + h + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]\]
\[ = \left[ \left( x + 0 + 2 \right)^2 + \left( x + 0 + 2 \right)\left( x + 2 \right) + \left( x + 2 \right)^2 \right]\]
\[ = \left( x + 2 \right)^2 + \left( x + 2 \right)^2 + \left( x + 2 \right)^2 \]
\[ = 3 \left( x + 2 \right)^2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 1.11 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (xx at x = 1

 


Find the derivative of (x) = tan x at x = 0 


k xn


\[\frac{1}{\sqrt{3 - x}}\]


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

 x2 sin x


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


x3 sin 


xn tan 


(1 − 2 tan x) (5 + 4 sin x)


sin2 


\[e^x \log \sqrt{x} \tan x\] 


(2x2 − 3) sin 


x4 (3 − 4x−5)


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Mark the correct alternative in of the following:

If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\] 

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×