हिंदी

Find the derivative of f (x) = tan x at x = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of (x) = tan x at x = 0 

उत्तर

We have: 

\[f'(x) = \lim_{h \to 0} \frac{f(0 + h) - f(0)}{h}\]
\[ = \lim_{h \to 0} \frac{f(h) - f(0)}{h}\]
\[ = \lim_{h \to 0} \frac{\tanh - \tan0}{h}\]
\[ = \lim_{h \to 0} \frac{\tanh}{h}\]
\[ = 1\]

 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.1 | Q 6 | पृष्ठ ३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sin (x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (x) = 99x at x = 100 


\[\frac{2}{x}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{x + 1}{x + 2}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


 tan 2


 log3 x + 3 loge x + 2 tan x


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

(ax + b) (a + d)2


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{p x^2 + qx + r}{ax + b}\]


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×