Advertisements
Advertisements
प्रश्न
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
उत्तर
\[ = \frac{d}{dx}\left( x^4 - 2 x^3 + 3 x^2 + x + 5 \right)\]
\[ = \frac{d}{dx}\left( x^4 \right) - 2\frac{d}{dx}\left( x^3 \right) + 3\frac{d}{dx}\left( x^2 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 5 \right)\]
\[ = 4 x^3 - 2\left( 3 x^2 \right) + 3\left( 2x \right) + 1 + 0\]
\[ = 4 x^3 - 6 x^2 + 6x + 1\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) = cos x at x = 0
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
x ex
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
(2x2 + 1) (3x + 2)
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
x3 sin x
xn tan x
(x3 + x2 + 1) sin x
x4 (5 sin x − 3 cos x)
x−4 (3 − 4x−5)
(ax + b) (a + d)2
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]