हिंदी

Find the Rate at Which the Function F (X) = X4 − 2x3 + 3x2 + X + 5 Changes with Respect to X. - Mathematics

Advertisements
Advertisements

प्रश्न

Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.

उत्तर

\[\text{ Rate } =f'(x)\]
\[ = \frac{d}{dx}\left( x^4 - 2 x^3 + 3 x^2 + x + 5 \right)\]
\[ = \frac{d}{dx}\left( x^4 \right) - 2\frac{d}{dx}\left( x^3 \right) + 3\frac{d}{dx}\left( x^2 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( 5 \right)\]
\[ = 4 x^3 - 2\left( 3 x^2 \right) + 3\left( 2x \right) + 1 + 0\]
\[ = 4 x^3 - 6 x^2 + 6x + 1\]

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 23 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (x) = cos x at x = 0


\[\frac{1}{\sqrt{x}}\]


\[\frac{1}{\sqrt{3 - x}}\]


 (x2 + 1) (x − 5)


x ex


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


(2x2 + 1) (3x + 2) 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ. 


x3 sin 


xn tan 


(x3 + x2 + 1) sin 


x4 (5 sin x − 3 cos x)


x4 (3 − 4x−5)


(ax + b) (a + d)2


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{3^x}{x + \tan x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×