Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
उत्तर
`d/dx((px^2 + qx + r)/(ax + b)) = ([d/dx (px^2 + qx + r)](ax + b) - (px^2 + qx + r)d/dx(ax + b))/(ax + b)^2`
= `((2px + q)(ax + b) - (px^2 + qx + r). a)/(ax + b)^2`
= `(2apx^2 + 2bpx + apx + bq - apx^2 - apx - ar)/(ax + b)^2`
= `(apx^2 + 2bpx + bq - ar)/(ax + b)^2`
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
\[\frac{2}{x}\]
\[\frac{x^2 - 1}{x}\]
k xn
x2 + x + 3
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
log3 x + 3 loge x + 2 tan x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
x2 ex log x
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
logx2 x
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{1 + \log x}{1 - \log x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]