Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
उत्तर
Let f(x) = (ax + b)n (cx + d)m
By Leibnitz product rule,
f'(x) = `(ax + b)^n d/dx (cx + d)^m + (cx + d)^m d/dx (ax + b)^n` ...(1)
Now, let f1(x) = (cx + d)m
f1(x + h) = (cx + ch + d)m
f1(x) = `lim_(h->0)(f_1(x + h) - f_1(x))/h`
= `lim_(h->0) ((cx + ch + d)^m - (cx + d)^n)/h`
= `(cx + d)^m lim_(h-0)1/h [(1 + (ch)/(cx + d))^m - 1]`
= `(cx + d)^m lim_(h-0) 1/h[(1 + (mch)/(cx + d) + (m(m - 1))/2 ((c^2h^2))/(cx + d)^2 + ...) -1]`
= `(cx + d)^m lim_(h->0) 1/h [(mch)/(cx + d) + (m(m - 1)c^2h^2)/(2(cx + d)^2) + ...("Terms containing higher degrees of h")]`
= `(cx + d)^m lim_(h->0) [(mc)/(cx + d) + (m(m - 1)c^2h)/(2(cx + d)^2 + ...]]`
= `(cx + d)^m [(mc)/(cx + d) + 0]`
= `(mc(cx + d)^m)/(cx + d)`
= mc (cx + d)m - 1
`d/dx (cx + d)^m` = mc (cx + d)m - 1 .....(2)
Similarly, `d/dx (ax + b)^n` = na (ax + b)n - 1 ...(3)
Therefore, from (1), (2), and (3), we obtain
f(x) = (ax + b)n {mc(cx + d)m - 1} + (cx + d)m {na (ax + b)n - 1}
= (ax + b)n - 1 (cx + d)m - 1 [mc (ax + b) + na (cx + d)]
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(a + bsin x)/(c + dcosx)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
\[\frac{1}{\sqrt{x}}\]
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
e3x
x ex
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
x2 ex log x
(x3 + x2 + 1) sin x
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x) (x cos x − sin x)
(x sin x + cos x ) (ex + x2 log x)
(1 − 2 tan x) (5 + 4 sin x)
(1 +x2) cos x
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x}{\sin^n x}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of f(x) = tan(ax + b), by first principle.