Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
उत्तर
Let f(x) = `(ax + b)/(cx + d)`
∴ f'(x) = `([d/dx (ax + b)](cx + d) - (ax + b) d/dx (cx + d))/((cx + d)^2)`
= `(a(cx + d) - (ax + b) .c)/((cx + d)^2)`
= `(acx + ad - acx - bc)/((cx + d)^2)`
= `(ad - bc)/((cx + d)^2)`
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of x–3 (5 + 3x).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) x at x = 1
\[\frac{1}{\sqrt{x}}\]
\[\frac{1}{x^3}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
x2 ex
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
If for f (x) = λ x2 + μ x + 12, f' (4) = 15 and f' (2) = 11, then find λ and μ.
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
x2 ex log x
xn tan x
logx2 x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
\[\frac{1}{a x^2 + bx + c}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]