Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
उत्तर
Let y = sinn x.
Accordingly, for n = 1, y = sin x
∴ `(dy)/(dx) = cos x` i.e. `(dy)/(dx) = sin x = cos x`
For n = 2, y = sin2 x
∴ `(dy)/(dx) = (d)/(dx) (sin x sin x)`
= (sin x)' sinx + sin x (sin x)' [By Leibnitz product rule]
= cos x sin x + sin x cos x
= 2 sin x cos x ...(1)
For n = 3, y = sin3 x
∴ `(dy)/(dx) = (d)/(dx) (sin x sin^2 x)`
= (sin x)' sinx2 + sin x (sin2 x) [By Leibnitz product rule]
= cos x sin2 x + sin x (2 sin x cos x) [Using (1)]
= cos x sin2 x 2 sin2 x cos x
= 3 sin2 x cos x
We assert that `d/dx (sin ^n x) = n sin ^(n - 1) x cos x`
Let our assertion be true for n = k.
i.e., `d/dx (sin ^k x) = k sin ^((k - 1)) x cos x` ...(2)
Consider
`d/dx (sin^(k + 1) x)` = `d/dx (sin x sin^k x)`
= (sin x)' sinxk x + sin x (sink x) [By Leibnitz product rule]
= cos x sink x + sin x (k sin(k - 1) x cos x) [Using (2)]
= cos x sink x + k sink x cos x
= (k + 1) sink x cos x
Thus, our assertion is true for n = k + 1.
Hence, by mathematical induction, `d/dx(sin^n x)`= n sin(n - 1) x cos x
APPEARS IN
संबंधित प्रश्न
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2x - 3/4`
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
\[\frac{2}{x}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
x sin x
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
(2x2 + 1) (3x + 2)
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
xn loga x
sin x cos x
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Find the derivative of f(x) = tan(ax + b), by first principle.
`(a + b sin x)/(c + d cos x)`