हिंदी

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sinn x - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x

योग

उत्तर

Let y = sinn x.

Accordingly, for n = 1, y = sin x

∴ `(dy)/(dx) = cos x` i.e. `(dy)/(dx) = sin x = cos x`

For n = 2, y = sin2 x

∴ `(dy)/(dx) = (d)/(dx) (sin x sin x)`

= (sin x)' sinx + sin x (sin x)'      [By Leibnitz product rule]

= cos x sin x + sin x cos x

= 2 sin x cos x    ...(1)

For n = 3, y = sin3 x

∴ `(dy)/(dx) = (d)/(dx) (sin x sin^2 x)`

= (sin x)' sinx2 + sin x (sin2 x)       [By Leibnitz product rule]

= cos x sin2 x + sin x (2 sin x cos x)     [Using (1)]

= cos x sin2 x 2 sin2 x cos x

= 3 sin2 x cos x

We assert that `d/dx (sin ^n x) = n sin ^(n - 1) x cos x`

Let our assertion be true for n = k.

i.e., `d/dx (sin ^k x) = k sin ^((k - 1)) x cos x`       ...(2)

Consider

`d/dx (sin^(k + 1) x)` = `d/dx (sin x sin^k x)`      

= (sin x)' sinxk x + sin x (sink x)                   [By Leibnitz product rule]

= cos x sink x + sin x (k sin(k - 1) x cos x)       [Using (2)]

= cos x sink x  + k sink x cos x

= (k + 1) sink x cos x

Thus, our assertion is true for n = k + 1.

Hence, by mathematical induction, `d/dx(sin^n x)`= n sin(n - 1) x cos x

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 13: Limits and Derivatives - Miscellaneous Exercise [पृष्ठ ३१८]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 11
अध्याय 13 Limits and Derivatives
Miscellaneous Exercise | Q 19 | पृष्ठ ३१८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2x - 3/4`


Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


k xn


\[\frac{1}{\sqrt{3 - x}}\]


Differentiate of the following from first principle:

(−x)−1


Differentiate  of the following from first principle:

 x sin x


Differentiate  of the following from first principle:

sin (2x − 3)


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


(2x2 + 1) (3x + 2) 


2 sec x + 3 cot x − 4 tan x


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


xn loga 


sin x cos x


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{ax + b}{p x^2 + qx + r}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\]  then \[f'\left( 1 \right)\] is equal to 


Find the derivative of f(x) = tan(ax + b), by first principle.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×