Advertisements
Advertisements
प्रश्न
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
उत्तर
\[\text{ Case } 1: x>0\]
\[\left| x \right| = x . . . \left( 1 \right)\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \log x\]
\[ = \frac{1}{x}\]
\[ = \frac{1}{\left| x \right|} (\text{ from } (1))\]
\[Case 2:x<0\]
\[\left| x \right| = - x . . . \left( 2 \right)\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \log \left( - x \right)\]
\[ = \frac{1}{- x}\]
\[ = \frac{1}{\left| x \right|} (\text{ from } (2))\]
\[\text{ From case } (1) \text{ and case }(2),\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \frac{1}{\left| x \right|}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–4 (3 – 4x–5).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = cos x at x = 0
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
x2 + x + 3
(x + 2)3
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
x2 ex
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
\[\sqrt{\tan x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
(2x2 + 1) (3x + 2)
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
xn tan x
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{1}{a x^2 + bx + c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of f(x) = tan(ax + b), by first principle.