हिंदी

Write the Value of D D X ( Log | X | ) - Mathematics

Advertisements
Advertisements

प्रश्न

Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]

उत्तर

\[\text{ Case } 1: x>0\]
\[\left| x \right| = x . . . \left( 1 \right)\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \log x\]
\[ = \frac{1}{x}\]
\[ = \frac{1}{\left| x \right|} (\text{ from } (1))\]
\[Case 2:x<0\]
\[\left| x \right| = - x . . . \left( 2 \right)\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \log \left( - x \right)\]
\[ = \frac{1}{- x}\]
\[ = \frac{1}{\left| x \right|} (\text{ from } (2))\]
\[\text{ From case } (1) \text{ and case }(2),\]
\[\frac{d}{dx}\left( \log \left| x \right| \right) = \frac{1}{\left| x \right|}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.6 | Q 10 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of f (x) = cos x at x = 0


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{x + 2}{3x + 5}\]


 x2 + x + 3


(x + 2)3


\[\frac{2x + 3}{x - 2}\] 


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


Differentiate each of the following from first principle:

x2 e


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


\[\sqrt{\tan x}\]


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\] 


(2x2 + 1) (3x + 2) 


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


xn tan 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{e^x + \sin x}{1 + \log x}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{1}{a x^2 + bx + c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×