हिंदी

X 2 + 1 X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x^2 + 1}{x}\]

उत्तर

\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{(x + h )^2 + 1}{x + h} - \frac{x^2 + 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x^2 + 2xh + h^2 + 1}{x + h} - \frac{x^2 + 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x^3 + 2 x^2 h + h^2 x + x - x^3 - x^2 h - x - h}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 h + h^2 x - h}{x(x + h)}\]
\[ = \lim_{h \to 0} \frac{h( x^2 + hx - 1)}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 + hx - 1}{x(x + h)}\]
\[ = \frac{x^2 - 1}{x^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.2 [पृष्ठ २५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.2 | Q 1.04 | पृष्ठ २५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

cosec x cot x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = x2 − 2 at x = 10


Find the derivative of the following function at the indicated point:


\[\frac{2}{x}\]


\[\frac{1}{x^3}\]


\[\frac{1}{\sqrt{3 - x}}\]


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate  of the following from first principle:

 eax + b


x ex


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


 log3 x + 3 loge x + 2 tan x


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


Find the slope of the tangent to the curve (x) = 2x6 + x4 − 1 at x = 1.


xn tan 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{x}{\sin^n x}\]


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


Write the derivative of f (x) = 3 |2 + x| at x = −3. 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of x2 cosx.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×