Advertisements
Advertisements
प्रश्न
\[\frac{x^2 + 1}{x}\]
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{(x + h )^2 + 1}{x + h} - \frac{x^2 + 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{\frac{x^2 + 2xh + h^2 + 1}{x + h} - \frac{x^2 + 1}{x}}{h}\]
\[ = \lim_{h \to 0} \frac{x^3 + 2 x^2 h + h^2 x + x - x^3 - x^2 h - x - h}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 h + h^2 x - h}{x(x + h)}\]
\[ = \lim_{h \to 0} \frac{h( x^2 + hx - 1)}{xh(x + h)}\]
\[ = \lim_{h \to 0} \frac{x^2 + hx - 1}{x(x + h)}\]
\[ = \frac{x^2 - 1}{x^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = x2 − 2 at x = 10
Find the derivative of the following function at the indicated point:
\[\frac{2}{x}\]
\[\frac{1}{x^3}\]
\[\frac{1}{\sqrt{3 - x}}\]
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
eax + b
x ex
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
log3 x + 3 loge x + 2 tan x
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
xn tan x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{\sin x - x \cos x}{x \sin x + \cos x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.