हिंदी

Mark the Correct Alternative in of the Following: If Y = Sin ( X + 9 ) Cos X Then D Y D X at X = 0 is - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 

विकल्प

  •  cos 9     

  • sin 9   

  •  0     

  • 1

MCQ

उत्तर

\[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] 

Differentiating both sides with respect to x, we get 

\[\frac{dy}{dx} = \frac{\cos x \times \frac{d}{dx}\sin\left( x + 9 \right) - \sin\left( x + 9 \right) \times \frac{d}{dx}\cos x}{\cos^2 x} \left( \text{ Quotient rule } \right)\]
\[ = \frac{\cos x \times \cos\left( x + 9 \right) - \sin\left( x + 9 \right) \times \left( - \sin x \right)}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 \right)\cos x + \sin\left( x + 9 \right)\sin x}{\cos^2 x}\]
\[ = \frac{\cos\left( x + 9 - x \right)}{\cos^2 x}\]
\[ = \frac{\cos9}{\cos^2 x}\]
Putting x = 0, we get 

\[\left( \frac{dy}{dx} \right)_{x = 0} = \frac{\cos9}{\cos^2 0} = \cos9\] 

Thus, \[\frac{dy}{dx}\]  at x = 0 is cos 9.

Hence, the correct answer is option (a).

 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.7 | Q 10 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(a + bsin x)/(c + dcosx)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{2}{x}\]


\[\frac{1}{x^3}\]


\[\frac{x^2 - 1}{x}\]


(x + 2)3


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each of the following from first principle:

\[3^{x^2}\]


tan2 


\[\sin \sqrt{2x}\]


\[\cos \sqrt{x}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


x2 ex log 


xn loga 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x3 ex cos 


x−3 (5 + 3x


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


(ax + b)n (cx d)


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x + \cos x}{\tan x}\] 


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Find the derivative of x2 cosx.


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×