हिंदी

X Sin X 1 + Cos X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x \sin x}{1 + \cos x}\]

उत्तर

\[\text{ Let } u = x \sin x; v = 1 + \cos x\]
\[\text{ Then }, u' = x \cos x + \sin x; v' = - \sin x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x \sin x}{1 + \cos x} \right) = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) - x \sin x\left( - \sin x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x \sin^2 x}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x \left( 1 - \cos^2 x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x\left( 1 + \cos x \right)\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x + x - x\cos x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x + \sin x \right)}{\left( 1 + \cos x \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 11 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


Find the derivative of x5 (3 – 6x–9).


Find the derivative of `2/(x + 1) - x^2/(3x -1)`.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 eax + b


Differentiate each of the following from first principle:

\[\sqrt{\sin 2x}\] 


\[\cos \sqrt{x}\]


\[\tan \sqrt{x}\]


 log3 x + 3 loge x + 2 tan x


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\] 


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


cos (x + a)


Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.


x3 sin 


xn loga 


(x3 + x2 + 1) sin 


sin x cos x


\[\frac{2^x \cot x}{\sqrt{x}}\] 


(x sin x + cos x) (x cos x − sin x


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


(2x2 − 3) sin 


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{x + e^x}{1 + \log x}\] 


\[\frac{1 + \log x}{1 - \log x}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×