Advertisements
Advertisements
प्रश्न
\[\frac{x \sin x}{1 + \cos x}\]
उत्तर
\[\text{ Let } u = x \sin x; v = 1 + \cos x\]
\[\text{ Then }, u' = x \cos x + \sin x; v' = - \sin x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x \sin x}{1 + \cos x} \right) = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) - x \sin x\left( - \sin x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x \sin^2 x}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x \left( 1 - \cos^2 x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x \right) + x\left( 1 + \cos x \right)\left( 1 - \cos x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x \cos x + \sin x + x - x\cos x \right)}{\left( 1 + \cos x \right)^2}\]
\[ = \frac{\left( 1 + \cos x \right)\left( x + \sin x \right)}{\left( 1 + \cos x \right)^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of 99x at x = 100.
Find the derivative of x5 (3 – 6x–9).
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{x}}\]
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
\[\cos \sqrt{x}\]
\[\tan \sqrt{x}\]
log3 x + 3 loge x + 2 tan x
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
cos (x + a)
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
x3 sin x
xn loga x
(x3 + x2 + 1) sin x
sin x cos x
\[\frac{2^x \cot x}{\sqrt{x}}\]
(x sin x + cos x) (x cos x − sin x)
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
(2x2 − 3) sin x
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{1 + \log x}{1 - \log x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is