Advertisements
Advertisements
प्रश्न
\[\frac{x \tan x}{\sec x + \tan x}\]
उत्तर
\[\text{ Let } u = x \tan x; v = \sec x + \tan x\]
\[\text{ Then }, u' = x \sec^2 x + \tan x; v' = \sec x \tan x + \sec^2 x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x\tan x}{\sec x + \tan x} \right) = \frac{\left( \sec x + \tan x \right)\left( x \sec^2 x + \tan x \right) - x \tan x\left( \sec x \tan x + \sec^2 x \right)}{\left( \sec x + \tan x \right)^2}\]
\[ = \frac{x \sec^3 x + x \sec^2 x\tan x + \sec x \tan x + \tan^2 x - x \sec x \tan^2 x - x \tan x \sec^2 x}{\left( \sec x + \tan x \right)^2}\]
\[ = \frac{\left( \sec x + \tan x \right)\left( x \sec^2 x + \tan x \right) - x \tan x \sec x\left( \sec x + \tan x \right)}{\left( \sec x + \tan x \right)^2}\]
\[ = \frac{x \sec^2 x + \tan x - x \tan x \sec x}{\sec x + \tan x}\]
\[ = \frac{x \sec x\left( \sec x - \tan x \right) + \tan x}{\sec x + \tan x}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x at x = 1.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x + 1}{x + 2}\]
k xn
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
\[\sqrt{\tan x}\]
\[\sin \sqrt{2x}\]
\[\tan \sqrt{x}\]
ex log a + ea long x + ea log a
(2x2 + 1) (3x + 2)
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
x3 ex cos x
(2x2 − 3) sin x
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
(ax2 + cot x)(p + q cos x)