हिंदी

X Tan X Sec X + Tan X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x \tan x}{\sec x + \tan x}\]

उत्तर

\[\text{ Let } u = x \tan x; v = \sec x + \tan x\]
\[\text{ Then }, u' = x \sec^2 x + \tan x; v' = \sec x \tan x + \sec^2 x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x\tan x}{\sec x + \tan x} \right) = \frac{\left( \sec x + \tan x \right)\left( x \sec^2 x + \tan x \right) - x \tan x\left( \sec x \tan x + \sec^2 x \right)}{\left( \sec x + \tan x \right)^2}\]
\[ = \frac{x \sec^3 x + x \sec^2 x\tan x + \sec x \tan x + \tan^2 x - x \sec x \tan^2 x - x \tan x \sec^2 x}{\left( \sec x + \tan x \right)^2}\]
\[ = \frac{\left( \sec x + \tan x \right)\left( x \sec^2 x + \tan x \right) - x \tan x \sec x\left( \sec x + \tan x \right)}{\left( \sec x + \tan x \right)^2}\]
\[ = \frac{x \sec^2 x + \tan x - x \tan x \sec x}{\sec x + \tan x}\]
\[ = \frac{x \sec x\left( \sec x - \tan x \right) + \tan x}{\sec x + \tan x}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 10 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x2 – 2 at x = 10.


Find the derivative of x at x = 1.


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px^2 +qx + r)/(ax +b)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

x4 (5 sin x – 3 cos x)


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:


\[\frac{1}{\sqrt{x}}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{x + 1}{x + 2}\]


k xn


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


Differentiate each of the following from first principle:

\[\frac{\sin x}{x}\]


Differentiate each of the following from first principle:

 x2 sin x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


\[\sqrt{\tan x}\]


\[\sin \sqrt{2x}\]


\[\tan \sqrt{x}\]


ex log a + ea long x + ea log a


(2x2 + 1) (3x + 2) 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


a0 xn + a1 xn−1 + a2 xn2 + ... + an1 x + an


x3 ex cos 


(2x2 − 3) sin 


x5 (3 − 6x−9


x4 (3 − 4x−5)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


(ax2 + cot x)(p + q cos x)


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×