Advertisements
Advertisements
प्रश्न
x3 ex cos x
उत्तर
\[\text{ Let } u = x^3 ; v = e^x ; w = \cos x\]
\[\text{ Then } , u' = 3 x^2 ; v' = e^x ; w' = - \sin x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uvw \right) = u'vw + uv'w + uvw'\]
\[\frac{d}{dx}\left( x^3 e^x \cos x \right) = 3 x^2 e^x \cos x + x^3 e^x \cos x + x^3 e^x \left( - \sin x \right)\]
\[ = x^2 e^x \left( 3 \cos x + x \cos x - x \sin x \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(px^2 + qx + r)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = cos x at x = 0
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 - 1}{x}\]
k xn
\[\frac{1}{\sqrt{3 - x}}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
tan (2x + 1)
\[\sin \sqrt{2x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
x2 ex log x
\[e^x \log \sqrt{x} \tan x\]
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b)n (cx + d)n
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x}{\sin^n x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.