Advertisements
Advertisements
प्रश्न
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
उत्तर
The given series is a geometric series where a = 1 and r = x.
\[f\left( x \right) = 1 + x + x^2 + x^3 + . . . = \frac{1}{1 - x}\]
\[\left( \text{ Sum of the infinite series of a geometric series is }\frac{a}{1 - r}. \right)\]
\[f'\left( x \right) = \frac{- 1}{(1 - x )^2}\frac{d}{dx}(1 - x)\]
\[ = \frac{- 1}{(1 - x )^2}( - 1)\]
\[ = \frac{1}{(1 - x )^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of x at x = 1.
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 2}{3x + 5}\]
\[\frac{1}{\sqrt{3 - x}}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
eax + b
x ex
Differentiate of the following from first principle:
sin (2x − 3)
Differentiate each of the following from first principle:
\[3^{x^2}\]
tan2 x
2 sec x + 3 cot x − 4 tan x
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
(x3 + x2 + 1) sin x
x2 sin x log x
(1 +x2) cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of f(x) = tan(ax + b), by first principle.
`(a + b sin x)/(c + d cos x)`
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.