Advertisements
Advertisements
प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
उत्तर
Let f(x) = cosec x cot x
By Leibnitz product rule,
f'(x) = cosec x (cot x)' + cot x (cosec x)' ...(1)
Let f (x) = cot x. Accordingly, f(x + h) = cot (x + h)
By first principle,
Let f1(x) = `lim_(h->0) (f_1(x + h)− f_1(x))/h`
= `lim_(h->0) ((cot (x + h) -cot x)/h)`
= `lim_(h->0) (cos (x + h)/(sin (x + h))-(cos x)/(sin x))`
= `lim_(h->0)1/h[(sin x cos (x + h) - cos x sin (x + h))/(sin x sin (x + h))]`
= `lim_(h->0)1/h[sin (x - h - h)/(sin x sin (x + h))]`
= `1/(sin x) lim_(h->0)1/h[sin (- h)/(sin (x + h))]`
= `1/(sin x) (lim_(h->0) (sin h)/h) (lim_(h->0) 1/(sin (x + h)))`
= `-1/(sin x).1 (1/(sin (x + 0)))`
= `(-1)/(sin^2 x)`
= - cosec2 x
∴ (cot x)' = - cosec2 x ...(2)
Now, let f2(x) = cosec x. Accordingly, f2(x + h) = cosec(x + h)
By first principle,
f2(x)' = `lim_(h->0) (f_2 (x + h) - f_2 (x))/h`
= `lim_(h->0) 1/h [cosec (x + h) - cosec x]`
= `lim_(h->0)1/h [1/(sin (x + h)) - 1/(sin x)]`
= `lim_(h->0)1/h [(sin x - sin (x + h))/(sin x sin (x + h))]`
= `1/(sin x). lim_(h->0)1/h[(2 cos ((x + x + h)/2) sin ((x - x - h)/2))/(sin (x + h))]`
= `1/(sin x). lim_(h->0)1/h [(2 cos ((2x + h)/2) sin ((-h)/2))/(sin (x + h))]`
= `1/(sin x). lim_(h->0)1/h [(2 cos ((2x + h)/2) sin ((-h)/2))/(sin (x + h))]`
= `1/sin x. lim_(h->0) [-sin(h/2)/((h/2)) (cos ((2x +h)/2))/(sin (x + h))]`
= `(-1)/(sin x). lim_(h->0) sin(h/2)/((h/2)) lim_(h->0) (cos ((2x + h)/2))/(sin (x + h))`
= `(-1)/ (sin x).1 (cos((2x + 0)/2))/(sin (x + 0)`
= `(-1)/(sin x).(cos x)/(sin x)`
= -cosecx . cot x
∴ (cosec x) = -cosec x. cot x ...(3)
From (1), (2), and (3), we obtain
f'(x) = cosec x(-cosec2x) + cot x (-cosec x cot x)
= -cosec3 x-cot2 x cosec x
APPEARS IN
संबंधित प्रश्न
Find the derivative of x2 – 2 at x = 10.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n (cx + d)m
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) x at x = 1
\[\frac{2}{x}\]
\[\frac{x + 2}{3x + 5}\]
k xn
(x2 + 1) (x − 5)
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
e3x
x ex
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[e^\sqrt{ax + b}\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
(x3 + x2 + 1) sin x
sin2 x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b) (a + d)2
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{x}{\sin^n x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = x^{100} + x^{99} + . . . + x + 1\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]