Advertisements
Advertisements
प्रश्न
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to
विकल्प
\[\frac{1}{100}\]
100
50
0
उत्तर
\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\]
Differentiating both sides with respect to x, we get
\[f'\left( x \right) = \frac{d}{dx}\left( 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( \frac{x^2}{2} \right) + . . . + \frac{d}{dx}\left( \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{1}{2}\frac{d}{dx}\left( x^2 \right) + . . . + \frac{1}{100}\frac{d}{dx}\left( x^{100} \right)\]
\[ = 0 + 1 + \frac{1}{2} \times 2x + . . . + \frac{1}{100} \times 100 x^{99} \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right) \]
\[ = 1 + x + x^2 + . . . + x^{99}\]
Putting x = 1, we get
\[f'\left( 1 \right) = 1 + 1 + 1 + . . . + 1 \left( 100 \text{ terms } \right)\]
\[ = 100\]
Hence, the correct answer is option (b).
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(ax + b)/(cx + d)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of f (x) x at x = 1
Find the derivative of the following function at the indicated point:
sin 2x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{1}{\sqrt{3 - x}}\]
x2 + x + 3
(x2 + 1) (x − 5)
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
(−x)−1
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
Differentiate each of the following from first principle:
sin x + cos x
\[\tan \sqrt{x}\]
(2x2 + 1) (3x + 2)
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
sin x cos x
(1 − 2 tan x) (5 + 4 sin x)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\]
If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
If f (x) = \[\log_{x_2}\]write the value of f' (x).
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]