हिंदी

Mark the Correct Alternative in of the Following: If F ( X ) = 1 + X + X 2 2 + . . . + X 100 100 Then F ′ ( 1 ) is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

Mark the correct alternative in  of the following:
If\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] then \[f'\left( 1 \right)\] is equal to 

विकल्प

  • \[\frac{1}{100}\] 

  • 100         

  • 50        

MCQ

उत्तर

\[f\left( x \right) = 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100}\] 

Differentiating both sides with respect to x, we get 

\[f'\left( x \right) = \frac{d}{dx}\left( 1 + x + \frac{x^2}{2} + . . . + \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{d}{dx}\left( \frac{x^2}{2} \right) + . . . + \frac{d}{dx}\left( \frac{x^{100}}{100} \right)\]
\[ = \frac{d}{dx}\left( 1 \right) + \frac{d}{dx}\left( x \right) + \frac{1}{2}\frac{d}{dx}\left( x^2 \right) + . . . + \frac{1}{100}\frac{d}{dx}\left( x^{100} \right)\]
\[ = 0 + 1 + \frac{1}{2} \times 2x + . . . + \frac{1}{100} \times 100 x^{99} \left( y = x^n \Rightarrow \frac{dy}{dx} = n x^{n - 1} \right) \]
\[ = 1 + x + x^2 + . . . + x^{99}\]

Putting x = 1, we get

\[f'\left( 1 \right) = 1 + 1 + 1 + . . . + 1 \left( 100 \text{ terms } \right)\]
\[ = 100\]

Hence, the correct answer is option (b).

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.7 [पृष्ठ ४८]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.7 | Q 8 | पृष्ठ ४८

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(cx + d)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of f (xx at x = 1

 


Find the derivative of the following function at the indicated point: 

 sin 2x at x =\[\frac{\pi}{2}\]


\[\frac{x^2 + 1}{x}\]


\[\frac{1}{\sqrt{3 - x}}\]


 x2 + x + 3


 (x2 + 1) (x − 5)


 (x2 + 1) (x − 5)


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

e3x


Differentiate of the following from first principle:

(−x)−1


Differentiate each of the following from first principle:

\[\sqrt{\sin (3x + 1)}\]


Differentiate each of the following from first principle: 

sin x + cos x


\[\tan \sqrt{x}\] 


(2x2 + 1) (3x + 2) 


\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\] 


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\] 


sin x cos x


(1 − 2 tan x) (5 + 4 sin x)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


If x < 2, then write the value of \[\frac{d}{dx}(\sqrt{x^2 - 4x + 4)}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


If f (1) = 1, f' (1) = 2, then write the value of \[\lim_{x \to 1} \frac{\sqrt{f (x)} - 1}{\sqrt{x} - 1}\] 


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


If f (x) =  \[\log_{x_2}\]write the value of f' (x). 


Mark the correct alternative in  of the following:

If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\] 


Mark the correct alternative in of the following:

If \[y = \sqrt{x} + \frac{1}{\sqrt{x}}\] then \[\frac{dy}{dx}\] at x = 1 is


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×