Advertisements
Advertisements
प्रश्न
Differentiate each of the following from first principle:
e−x
उत्तर
\[ \frac{d}{dx}\left( f(x) \right) = \lim_{h \to 0} \frac{f\left( x + h \right) - f\left( x \right)}{h}\]
\[\frac{d}{dx}\left( e^x \right) = \lim_{h \to 0} \frac{e^{- (x + h)} - e^{- x}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{- x} e^{- h} - e^{- x}}{h}\]
\[ = \lim_{h \to 0} \frac{e^{- x} \left( e^{- h} - 1 \right)}{h}\]
\[ = - e^{- x} \lim_{h \to 0} \frac{e^{- h} - 1}{- h}\]
\[ = - e^{- x} \left( 1 \right)\]
\[ = - e^{- x}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
x4 (5 sin x – 3 cos x)
Find the derivative of f (x) = 3x at x = 2
Find the derivative of f (x) x at x = 1
Find the derivative of f (x) = tan x at x = 0
\[\frac{x + 1}{x + 2}\]
\[\frac{1}{\sqrt{3 - x}}\]
\[\sqrt{2 x^2 + 1}\]
Differentiate each of the following from first principle:
\[\frac{\cos x}{x}\]
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
tan2 x
\[\sin \sqrt{2x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
\[\frac{1}{\sin x} + 2^{x + 3} + \frac{4}{\log_x 3}\]
cos (x + a)
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\text{ If } y = \frac{2 x^9}{3} - \frac{5}{7} x^7 + 6 x^3 - x, \text{ find } \frac{dy}{dx} at x = 1 .\]
x2 ex log x
(x sin x + cos x) (x cos x − sin x)
logx2 x
x3 ex cos x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
(ax + b) (a + d)2
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Write the derivative of f (x) = 3 |2 + x| at x = −3.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]