हिंदी

Find the Derivative of F (X) = 3x at X = 2 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the derivative of f (x) = 3x at x = 2 

उत्तर

We have: 

\[{f'(2) = \lim}_{h \to 0} \frac{f(2 + h) - f(2)}{h}\]
\[ = \lim_{h \to 0} \frac{3(2 + h) - 3(2)}{h}\]
\[ = \lim_{h \to 0} \frac{6 + 3h - 6}{h}\]
\[ = \lim_{h \to 0} \frac{3h}{h}\]
\[ = 3\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.1 [पृष्ठ ३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.1 | Q 1 | पृष्ठ ३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x–4 (3 – 4x–5).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of the following function at the indicated point:


\[\frac{x + 1}{x + 2}\]


(x + 2)3


x ex


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle: 

sin x + cos x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[e^\sqrt{ax + b}\]


tan2 


3x + x3 + 33


cos (x + a)


x3 e


\[\frac{2^x \cot x}{\sqrt{x}}\] 


x2 sin x log 


(x sin x + cos x) (x cos x − sin x


(1 − 2 tan x) (5 + 4 sin x)


sin2 


x5 (3 − 6x−9


x4 (3 − 4x−5)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


If f (x) = \[\frac{x^2}{\left| x \right|},\text{ write }\frac{d}{dx}\left( f (x) \right)\] 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×