Advertisements
Advertisements
प्रश्न
(1 − 2 tan x) (5 + 4 sin x)
उत्तर
\[\text{ Let } u = 1 - 2 \tan x; v = 5 + 4 \sin x \]
\[\text{ Then }, u' = - 2 \sec^2 x; v' = 4 \cos x\]
\[\text{ Using the product rule }:\]
\[\frac{d}{dx}\left( uv \right) = u v' + v u'\]
\[\frac{d}{dx}\left[ \left( 1 - 2 \tan x \right)\left( 5 + 4 \sin x \right) \right]\]
\[ = \left( 1 - 2 \tan x \right)\left( 4 \cos x \right) + \left( 5 + 4 \sin x \right)\left( - 2 \sec^2 x \right)\]
\[ = 4 \cos x - 8 \times \frac{\sin x}{\cos x}\cos x - 10 \sec^2 x - 8 \times \frac{\sin x}{\cos^2 x}\]
\[ = 4 \cos x - 8 \sin x - 10 \sec^2 x - 8 \sec x \tan x \]
\[ = 4\left( \cos x - 2 \sin x - \frac{5}{2} \sec^2 x - 2 \sec x \tan x \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x–3 (5 + 3x).
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px^2 +qx + r)/(ax +b)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of the following function at the indicated point:
\[\frac{x^2 - 1}{x}\]
k xn
x ex
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
\[\sqrt{\tan x}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
Find the rate at which the function f (x) = x4 − 2x3 + 3x2 + x + 5 changes with respect to x.
\[\frac{2^x \cot x}{\sqrt{x}}\]
x2 sin x log x
x5 ex + x6 log x
(x sin x + cos x) (x cos x − sin x)
sin2 x
x−4 (3 − 4x−5)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
\[\frac{e^x - \tan x}{\cot x - x^n}\]
\[\frac{x \tan x}{\sec x + \tan x}\]
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{a + \sin x}{1 + a \sin x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`