हिंदी

X 2 − X + 1 X 2 + X + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 

उत्तर

\[\text{ Let } u = x^2 - x + 1; v = x^2 + x + 1\]
\[\text{ Then }, u' = 2x - 1; v' = 2x + 1\]
\[\text{ By quotient rule },\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{x^2 - x + 1}{x^2 + x + 1} \right) = \frac{\left( x^2 + x + 1 \right)\left( 2x - 1 \right) - \left( x^2 - x + 1 \right)\left( 2x + 1 \right)}{\left( x^2 + x + 1 \right)^2}\]
\[ = \frac{2 x^3 + 2 x^2 + 2x - x^2 - x - 1 - 2 x^3 + 2 x^2 - 2x - x^2 + x - 1}{\left( x^2 + x + 1 \right)^2}\]
\[ = \frac{2 x^2 - 2}{\left( x^2 + x + 1 \right)^2}\]
\[ = \frac{2\left( x^2 - 1 \right)}{\left( x^2 + x + 1 \right)^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 14 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


Find the derivative of x at x = 1.


Find the derivative of x–3 (5 + 3x).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n (cx + d)m


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of f (x) = 3x at x = 2 


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

e3x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


tan (2x + 1) 


\[\sin \sqrt{2x}\]


\[\cos \sqrt{x}\]


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


(2x2 + 1) (3x + 2) 


 log3 x + 3 loge x + 2 tan x


2 sec x + 3 cot x − 4 tan x


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


(ax + b)n (cx d)


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{e^x - \tan x}{\cot x - x^n}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{e^x}{1 + x^2}\] 


\[\frac{2^x \cot x}{\sqrt{x}}\] 


\[\frac{3^x}{x + \tan x}\] 


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×