हिंदी

e x 1 + x 2 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{e^x}{1 + x^2}\] 

उत्तर

\[\text{ Let } u = e^x ; v = 1 + x^2 \]
\[\text{ Then }, u' = e^x ; v' = 2x\]
\[\text{ Using the chain rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{e^x}{1 + x^2} \right) = \frac{\left( 1 + x^2 \right) e^x - e^x \left( 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x + x^2 e^x - 2x e^x}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 + x^2 - 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2}\]
\[\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 8 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of `2x - 3/4`


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`1/(ax^2 + bx + c)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b)n


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin x + cos x)/(sin x - cos x)`


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{x^2 + 1}{x}\]


Differentiate  of the following from first principle:

sin (x + 1)


Differentiate of the following from first principle:

 x cos x


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


tan (2x + 1) 


\[\sqrt{\tan x}\]


\[\tan \sqrt{x}\] 


3x + x3 + 33


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]  


x3 e


(x3 + x2 + 1) sin 


x3 ex cos 


\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\] 


x4 (5 sin x − 3 cos x)


x5 (3 − 6x−9


x4 (3 − 4x−5)


(ax + b)n (cx d)


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{1 + \log x}{1 - \log x}\] 


Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\] 


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in each of the following: 

If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\] 


Find the derivative of 2x4 + x.


Find the derivative of x2 cosx.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×