Advertisements
Advertisements
प्रश्न
\[\frac{e^x}{1 + x^2}\]
उत्तर
\[\text{ Let } u = e^x ; v = 1 + x^2 \]
\[\text{ Then }, u' = e^x ; v' = 2x\]
\[\text{ Using the chain rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{e^x}{1 + x^2} \right) = \frac{\left( 1 + x^2 \right) e^x - e^x \left( 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x + x^2 e^x - 2x e^x}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 + x^2 - 2x \right)}{\left( 1 + x^2 \right)^2}\]
\[ = \frac{e^x \left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of `2x - 3/4`
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`1/(ax^2 + bx + c)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b)n
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin x + cos x)/(sin x - cos x)`
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
2 cos x at x =\[\frac{\pi}{2}\]
\[\frac{x^2 + 1}{x}\]
Differentiate of the following from first principle:
sin (x + 1)
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
tan (2x + 1)
\[\sqrt{\tan x}\]
\[\tan \sqrt{x}\]
3x + x3 + 33
\[\frac{2 x^2 + 3x + 4}{x}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
x3 ex
(x3 + x2 + 1) sin x
x3 ex cos x
\[\frac{x^2 \cos\frac{\pi}{4}}{\sin x}\]
x4 (5 sin x − 3 cos x)
x5 (3 − 6x−9)
x−4 (3 − 4x−5)
(ax + b)n (cx + d)n
\[\frac{x \sin x}{1 + \cos x}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{1 + \log x}{1 - \log x}\]
Write the value of \[\frac{d}{dx}\left( x \left| x \right| \right)\]
Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Find the derivative of 2x4 + x.
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`