हिंदी

2 x 2 + 3 x + 4 x - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{2 x^2 + 3x + 4}{x}\] 

उत्तर

\[\frac{d}{dx}\left( \frac{2 x^2 + 3x + 4}{x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2 x^2}{x} \right) + \frac{d}{dx}\left( \frac{3x}{x} \right) + \frac{d}{dx}\left( \frac{4}{x} \right)\]
\[ = 2\frac{d}{dx}\left( x \right) + 3\frac{d}{dx}\left( 1 \right) + 4\frac{d}{dx}\left( x^{- 1} \right)\]
\[ = 2\left( 1 \right) + 3\left( 0 \right) + 4\left( - 1 \right) x^{- 2} \]
\[ = 2 - \frac{4}{x^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 9 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of x5 (3 – 6x–9).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`cos x/(1 + sin x)`


Find the derivative of f (x) = 3x at x = 2 


 (x2 + 1) (x − 5)


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


 tan 2


\[\tan \sqrt{x}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


2 sec x + 3 cot x − 4 tan x


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]


\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]


x3 sin 


xn loga 


x2 sin x log 


x5 ex + x6 log 


x3 ex cos 


x5 (3 − 6x−9


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


(ax + b)n (cx d)


\[\frac{1}{a x^2 + bx + c}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{a + b \sin x}{c + d \cos x}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Mark the correct alternative in of the following:

Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×