Advertisements
Advertisements
प्रश्न
\[\frac{2 x^2 + 3x + 4}{x}\]
उत्तर
\[\frac{d}{dx}\left( \frac{2 x^2 + 3x + 4}{x} \right)\]
\[ = \frac{d}{dx}\left( \frac{2 x^2}{x} \right) + \frac{d}{dx}\left( \frac{3x}{x} \right) + \frac{d}{dx}\left( \frac{4}{x} \right)\]
\[ = 2\frac{d}{dx}\left( x \right) + 3\frac{d}{dx}\left( 1 \right) + 4\frac{d}{dx}\left( x^{- 1} \right)\]
\[ = 2\left( 1 \right) + 3\left( 0 \right) + 4\left( - 1 \right) x^{- 2} \]
\[ = 2 - \frac{4}{x^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of x5 (3 – 6x–9).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`cos x/(1 + sin x)`
Find the derivative of f (x) = 3x at x = 2
(x2 + 1) (x − 5)
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
tan 2x
\[\tan \sqrt{x}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
2 sec x + 3 cot x − 4 tan x
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x3 sin x
xn loga x
x2 sin x log x
x5 ex + x6 log x
x3 ex cos x
x5 (3 − 6x−9)
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
(ax + b)n (cx + d)n
\[\frac{1}{a x^2 + bx + c}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{a + b \sin x}{c + d \cos x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Find the derivative of x2 cosx.
Find the derivative of f(x) = tan(ax + b), by first principle.