Advertisements
Advertisements
प्रश्न
\[\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3\]
उत्तर
\[\frac{d}{dx} \left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)^3 \]
\[ = \frac{d}{dx}\left[ \left( \sqrt{x} \right)^3 + 3 \left( \sqrt{x} \right)^2 \left( \frac{1}{\sqrt{x}} \right) + 3\left( \sqrt{x} \right) \left( \frac{1}{\sqrt{x}} \right)^2 + \left( \frac{1}{\sqrt{x}} \right)^3 \right]\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} \right) + 3\frac{d}{dx}\left( x^\frac{1}{2} \right) + 3\frac{d}{dx}\left( x^\frac{- 1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 3}{2} \right)\]
\[ = \frac{3}{2} x^\frac{3}{2} - 1 + 3 . \frac{1}{2} x^\frac{1}{2} - 1 + 3\left( \frac{- 1}{2} \right) x^\frac{- 1}{2} - 1 + \left( \frac{- 3}{2} \right) x^\frac{- 3}{2} - 1 \]
\[ = \frac{3}{2} x^\frac{1}{2} + \frac{3}{2} x^\frac{- 1}{2} - \frac{3}{2} x^\frac{- 3}{2} - \frac{3}{2} x^\frac{- 5}{2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of x at x = 1.
For the function
f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`
Prove that f'(1) = 100 f'(0)
Find the derivative of `2x - 3/4`
Find the derivative of `2/(x + 1) - x^2/(3x -1)`.
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sec x - 1)/(sec x + 1)`
Find the derivative of f (x) = cos x at x = 0
\[\frac{1}{x^3}\]
\[\frac{x^2 + 1}{x}\]
\[\frac{x^2 - 1}{x}\]
\[\frac{x + 1}{x + 2}\]
\[\frac{x + 2}{3x + 5}\]
x2 + x + 3
\[\frac{2x + 3}{x - 2}\]
Differentiate of the following from first principle:
\[\cos\left( x - \frac{\pi}{8} \right)\]
Differentiate of the following from first principle:
x cos x
tan (2x + 1)
2 sec x + 3 cot x − 4 tan x
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\text{ If } y = \left( \sin\frac{x}{2} + \cos\frac{x}{2} \right)^2 , \text{ find } \frac{dy}{dx} at x = \frac{\pi}{6} .\]
Find the slope of the tangent to the curve f (x) = 2x6 + x4 − 1 at x = 1.
sin x cos x
x2 sin x log x
sin2 x
\[e^x \log \sqrt{x} \tan x\]
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
(ax + b) (a + d)2
\[\frac{x + e^x}{1 + \log x}\]
\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\]
\[\frac{1 + 3^x}{1 - 3^x}\]
\[\frac{3^x}{x + \tan x}\]
\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]
Write the value of \[\frac{d}{dx} \left\{ \left( x + \left| x \right| \right) \left| x \right| \right\}\]
Mark the correct alternative in of the following:
Let f(x) = x − [x], x ∈ R, then \[f'\left( \frac{1}{2} \right)\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If\[f\left( x \right) = 1 - x + x^2 - x^3 + . . . - x^{99} + x^{100}\]then \[f'\left( 1 \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in each of the following:
If\[f\left( x \right) = \frac{x^n - a^n}{x - a}\] then \[f'\left( a \right)\]
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]