हिंदी

( X + 1 X ) ( √ X + 1 √ X ) - Mathematics

Advertisements
Advertisements

प्रश्न

\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 

उत्तर

\[\frac{d}{dx}\left[ \left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right) \right]\]
\[ = \frac{d}{dx}\left[ \left( x + x^{- 1} \right)\left( x^\frac{1}{2} + x^\frac{- 1}{2} \right) \right]\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} + x^\frac{1}{2} + x^\frac{- 1}{2} + x^\frac{- 3}{2} \right)\]
\[ = \frac{d}{dx}\left( x^\frac{3}{2} \right) + \frac{d}{dx}\left( x^\frac{1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 1}{2} \right) + \frac{d}{dx}\left( x^\frac{- 3}{2} \right)\]
\[ = \frac{3}{2} x^\frac{1}{2} + \frac{1}{2} x^\frac{- 1}{2} - \frac{1}{2} x^\frac{- 3}{2} - \frac{3}{2} x^\frac{- 5}{2} \]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.3 [पृष्ठ ३४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.3 | Q 7 | पृष्ठ ३४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of x at x = 1.


For the function

f(x) = `x^100/100 + x^99/99 + ...+ x^2/2 + x + 1`

Prove that f'(1) = 100 f'(0)


Find the derivative of `2x - 3/4`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`a/x^4 = b/x^2 + cos x`


Find the derivative of f (x) = 3x at x = 2 


Find the derivative of f (xx at x = 1

 


Find the derivative of (x) = tan x at x = 0 


Find the derivative of the following function at the indicated point:

2 cos x at x =\[\frac{\pi}{2}\] 


\[\frac{1}{\sqrt{x}}\]


\[\frac{x + 2}{3x + 5}\]


\[\sqrt{2 x^2 + 1}\]


Differentiate  of the following from first principle:

e3x


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

\[\cos\left( x - \frac{\pi}{8} \right)\]


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle: 

\[\frac{\cos x}{x}\]


Differentiate each of the following from first principle:

x2 e


tan (2x + 1) 


\[\cos \sqrt{x}\]


\[\frac{(x + 5)(2 x^2 - 1)}{x}\]


x3 e


x2 sin x log 


(1 +x2) cos x


x4 (3 − 4x−5)


x−3 (5 + 3x


Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same. 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{\sqrt{a} + \sqrt{x}}{\sqrt{a} - \sqrt{x}}\] 


\[\frac{a + \sin x}{1 + a \sin x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{x}{1 + \tan x}\] 


Write the value of \[\lim_{x \to a} \frac{x f (a) - a f (x)}{x - a}\]


Write the value of the derivative of f (x) = |x − 1| + |x − 3| at x = 2.


If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of f(x) = tan(ax + b), by first principle.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×