हिंदी

If F (X) = |X| + |X−1|, Write the Value of D D X ( F ( X ) ) - Mathematics

Advertisements
Advertisements

प्रश्न

If f (x) = |x| + |x−1|, write the value of \[\frac{d}{dx}\left( f (x) \right)\]

उत्तर

\[f\left( x \right) = \left| x \right| + \left| x - 1 \right|\]
\[\text{ Case }1: x<0 (\therefore x-1<-1<0)\]
\[\left| x \right| = - x; \left| x - 1 \right| = - \left( x - 1 \right) = - x + 1\]
\[f\left( x \right) = - x + \left( - x + 1 \right) = - 2x\]
\[f'\left( x \right) = - 2\]
\[\text{ Case } 2: 0< x <1 (\therefore x>0 \text{ and } x-1<0)\]
\[\left| x \right| = x; \left| x - 1 \right| = - \left( x - 1 \right) = 1 - x\]
\[f\left( x \right) = x + 1 - x = 1\]
\[f'\left( x \right) = 0\]
\[\text{ Case } 3: x>1 \therefore x>1>0 \Rightarrow x>0)\]
\[\left| x \right| = x; \left| x - 1 \right| = x - 1\]
\[f\left( x \right) = x + x - 1 = 2x - 1\]
\[f'\left( x \right) = 2\]

\[f'(x)=\begin{cases}-2, \text{When } x < 0 \\0, \text{When }0 < x <1\\2, \text{When } x >1 \end{cases}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.6 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.6 | Q 7 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of 99x at x = 100.


Find the derivative of (5x3 + 3x – 1) (x – 1).


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(x + a)


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(ax + b)/(px^2 + qx + r)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`4sqrtx - 2`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sec x - 1)/(sec x + 1)`


Find the derivative of f (x) = 99x at x = 100 


Find the derivative of the following function at the indicated point: 

 sin x at x =\[\frac{\pi}{2}\]

 


 (x2 + 1) (x − 5)


\[\frac{2x + 3}{x - 2}\] 


x ex


Differentiate of the following from first principle:

 x cos x


 tan 2


\[\tan \sqrt{x}\] 


ex log a + ea long x + ea log a


cos (x + a)


For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]

 

x3 sin 


x3 ex cos 


x4 (5 sin x − 3 cos x)


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)


\[\frac{2x - 1}{x^2 + 1}\] 


\[\frac{a x^2 + bx + c}{p x^2 + qx + r}\] 


\[\frac{x}{1 + \tan x}\] 


\[\frac{x \sin x}{1 + \cos x}\]


\[\frac{1 + 3^x}{1 - 3^x}\]


\[\frac{3^x}{x + \tan x}\] 


\[\frac{4x + 5 \sin x}{3x + 7 \cos x}\]


\[\frac{\sec x - 1}{\sec x + 1}\] 


\[\frac{x^5 - \cos x}{\sin x}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


Mark the correct alternative in  of the following: 

If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\] 


Mark the correct alternative in each of the following:
If\[y = \frac{\sin x + \cos x}{\sin x - \cos x}\] then \[\frac{dy}{dx}\]at x = 0 is 


Find the derivative of x2 cosx.


Find the derivative of f(x) = tan(ax + b), by first principle.


`(a + b sin x)/(c + d cos x)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×