Advertisements
Advertisements
प्रश्न
\[\frac{2x - 1}{x^2 + 1}\]
उत्तर
\[\text{ Let u } = 2x - 1; v = x^2 + 1; \]
\[\text{ Then }, u' = 2; v' = 2x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{2x - 1}{x^2 + 1} \right) = \frac{\left( x^2 + 1 \right)2 - \left( 2x - 1 \right)2x}{( x^2 + 1 )^2}\]
\[ = \frac{2 x^2 + 2 - 4 x^2 + 2x}{( x^2 + 1 )^2}\]
\[ = \frac{- 2 x^2 + 2x + 2}{( x^2 + 1 )^2}\]
\[ = \frac{2\left( 1 + x - x^2 \right)}{( x^2 + 1 )^2}\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(1 + 1/x)/(1- 1/x)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(sin(x + a))/ cos x`
Find the derivative of f (x) = tan x at x = 0
k xn
(x + 2)3
Differentiate each of the following from first principle:
e−x
Differentiate of the following from first principle:
eax + b
Differentiate of the following from first principle:
− x
Differentiate of the following from first principle:
x sin x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[e^\sqrt{2x}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
3x + x3 + 33
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{2 x^2 + 3x + 4}{x}\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\]
x3 ex
(2x2 − 3) sin x
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(x + 2) (x + 3)
\[\frac{x^2 + 1}{x + 1}\]
\[\frac{x^2 - x + 1}{x^2 + x + 1}\]
\[\frac{{10}^x}{\sin x}\]
\[\frac{x + \cos x}{\tan x}\]
\[\frac{1}{a x^2 + bx + c}\]
Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Mark the correct alternative in of the following:
If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\]
Find the derivative of 2x4 + x.