हिंदी

2 X − 1 X 2 + 1 - Mathematics

Advertisements
Advertisements

प्रश्न

\[\frac{2x - 1}{x^2 + 1}\] 

उत्तर

\[\text{ Let u } = 2x - 1; v = x^2 + 1; \]
\[\text{ Then }, u' = 2; v' = 2x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{2x - 1}{x^2 + 1} \right) = \frac{\left( x^2 + 1 \right)2 - \left( 2x - 1 \right)2x}{( x^2 + 1 )^2}\]
\[ = \frac{2 x^2 + 2 - 4 x^2 + 2x}{( x^2 + 1 )^2}\]
\[ = \frac{- 2 x^2 + 2x + 2}{( x^2 + 1 )^2}\]
\[ = \frac{2\left( 1 + x - x^2 \right)}{( x^2 + 1 )^2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 30: Derivatives - Exercise 30.5 [पृष्ठ ४४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 11
अध्याय 30 Derivatives
Exercise 30.5 | Q 2 | पृष्ठ ४४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(px+ q) (r/s + s)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

(ax + b) (cx + d)2


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(1 + 1/x)/(1- 1/x)`


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

sinn x


Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):

`(sin(x + a))/ cos x`


Find the derivative of (x) = tan x at x = 0 


k xn


(x + 2)3


Differentiate each of the following from first principle:

ex


Differentiate  of the following from first principle:

 eax + b


Differentiate  of the following from first principle: 

− x


Differentiate  of the following from first principle:

 x sin x


Differentiate each of the following from first principle: 

\[e^{x^2 + 1}\]


Differentiate each  of the following from first principle:

\[e^\sqrt{2x}\]


Differentiate each of the following from first principle:

\[a^\sqrt{x}\]


3x + x3 + 33


\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]


\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\] 


\[\frac{2 x^2 + 3x + 4}{x}\] 


\[\frac{a \cos x + b \sin x + c}{\sin x}\]


\[\log\left( \frac{1}{\sqrt{x}} \right) + 5 x^a - 3 a^x + \sqrt[3]{x^2} + 6 \sqrt[4]{x^{- 3}}\] 


x3 e


(2x2 − 3) sin 


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same. 

 (3x2 + 2)2


Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.

(x + 2) (x + 3)

 


\[\frac{x^2 + 1}{x + 1}\] 


\[\frac{x^2 - x + 1}{x^2 + x + 1}\] 


\[\frac{{10}^x}{\sin x}\] 


\[\frac{x + \cos x}{\tan x}\] 


\[\frac{1}{a x^2 + bx + c}\] 


Write the value of \[\lim_{x \to c} \frac{f(x) - f(c)}{x - c}\] 


If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]


Write the value of \[\frac{d}{dx}\left( \log \left| x \right| \right)\]


Mark the correct alternative in of the following: 

If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]

 


Mark the correct alternative in  of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is 


Mark the correct alternative in of the following: 

If f(x) = x sinx, then \[f'\left( \frac{\pi}{2} \right) =\] 


Find the derivative of 2x4 + x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×