Advertisements
Advertisements
प्रश्न
\[\frac{{10}^x}{\sin x}\]
उत्तर
\[\text{ Let } u = {10}^x ; v = \sin x\]
\[\text{ Then }, u' = {10}^x \log 10; v' = \cos x\]
\[\text{ Using the quotient rule }:\]
\[\frac{d}{dx}\left( \frac{u}{v} \right) = \frac{vu' - uv'}{v^2}\]
\[\frac{d}{dx}\left( \frac{{10}^x}{\sin x} \right) = \frac{\sin x {10}^x \log 10 - {10}^x \cos x}{\sin^2 x}\]
\[ = \frac{\sin x {10}^x \log 10}{\sin^2 x} - \frac{{10}^x \cos x}{\sin^2 x}\]
\[ = {10}^x \log 10 \cos ec x - {10}^x cosec x \cot x\]
\[ = {10}^x cosec x\left( \log 10 - \cot x \right)\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(x + a)
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
(ax + b) (cx + d)2
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`a/x^4 = b/x^2 + cos x`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`4sqrtx - 2`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
sinn x
Find the derivative of f (x) = 99x at x = 100
Find the derivative of f (x) = tan x at x = 0
\[\sqrt{2 x^2 + 1}\]
Differentiate of the following from first principle:
e3x
Differentiate of the following from first principle:
(−x)−1
Differentiate of the following from first principle:
x cos x
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[\sqrt{\sin (3x + 1)}\]
\[\cos \sqrt{x}\]
\[\left( x + \frac{1}{x} \right)\left( \sqrt{x} + \frac{1}{\sqrt{x}} \right)\]
\[\frac{a \cos x + b \sin x + c}{\sin x}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
\[If y = \sqrt{\frac{x}{a}} + \sqrt{\frac{a}{x}}, \text{ prove that } 2xy\frac{dy}{dx} = \left( \frac{x}{a} - \frac{a}{x} \right)\]
For the function \[f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + . . . + \frac{x^2}{2} + x + 1 .\]
sin x cos x
sin2 x
logx2 x
x3 ex cos x
x4 (5 sin x − 3 cos x)
Differentiate in two ways, using product rule and otherwise, the function (1 + 2 tan x) (5 + 4 cos x). Verify that the answers are the same.
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3x2 + 2)2
Differentiate each of the following functions by the product rule and the other method and verify that answer from both the methods is the same.
(3 sec x − 4 cosec x) (−2 sin x + 5 cos x)
\[\frac{2x - 1}{x^2 + 1}\]
\[\frac{x}{1 + \tan x}\]
\[\frac{e^x + \sin x}{1 + \log x}\]
\[\frac{\sec x - 1}{\sec x + 1}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{x + \cos x}{\tan x}\]
If \[\frac{\pi}{2}\] then find \[\frac{d}{dx}\left( \sqrt{\frac{1 + \cos 2x}{2}} \right)\]
Mark the correct alternative in of the following:
If \[y = \frac{1 + \frac{1}{x^2}}{1 - \frac{1}{x^2}}\] then \[\frac{dy}{dx} =\]
Find the derivative of 2x4 + x.