Advertisements
Advertisements
प्रश्न
\[\cos \sqrt{x}\]
उत्तर
\[ \text{ Let } f(x) = \cos \sqrt{x} \]
\[\text{ Thus, we have }: \]
\[ f(x + h) = \cos \sqrt{x + h}\]
\[\frac{d}{dx}\left( f\left( x \right) \right) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}\]
\[ = \lim_{h \to 0} \frac{\cos \sqrt{x + h} - \cos \sqrt{x}}{h}\]
\[\text{ We know }: \]
\[ \cos C - \cos D = - 2\sin\left( \frac{C + D}{2} \right) \sin\left( \frac{C - D}{2} \right)\]
\[ = \lim_{h \to 0} \frac{- 2\sin \left( \frac{\sqrt{x + h} + \sqrt{x}}{2} \right) \sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{h}\]
\[ = \lim_{h \to 0} \frac{- 2\sin \left( \frac{\sqrt{x + h} + \sqrt{x}}{2} \right) \sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{x + h - x}\]
\[ = \lim_{h \to 0} \frac{- 2\sin \left( \frac{\sqrt{x + h} + \sqrt{x}}{2} \right) \sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{2 \times \left( \sqrt{x + h} + \sqrt{x} \right)\frac{\left( \sqrt{x + h} - \sqrt{x} \right)}{2}}\]
\[ = \lim_{h \to 0} \frac{\sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{\frac{\sqrt{x + h} - \sqrt{x}}{2}} \lim_{h \to 0} \frac{- \sin\left( \frac{\sqrt{x + h} + \sqrt{x}}{2} \right)}{\sqrt{x + h} + \sqrt{x}} \]
\[ = 1 \times \frac{- \sin\sqrt{x}}{2\sqrt{x}} \left[ \because \lim_{h \to 0} \frac{\sin\left( \frac{\sqrt{x + h} - \sqrt{x}}{2} \right)}{\frac{\sqrt{x + h} - \sqrt{x}}{2}} = 1 \right]\]
\[ = \frac{- \sin\sqrt{x}}{2\sqrt{x}}\]
\[\]
APPEARS IN
संबंधित प्रश्न
Find the derivative of (5x3 + 3x – 1) (x – 1).
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
`(px+ q) (r/s + s)`
Find the derivative of the following function (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):
cosec x cot x
Find the derivative of f (x) = tan x at x = 0
Find the derivative of the following function at the indicated point:
sin x at x =\[\frac{\pi}{2}\]
Find the derivative of the following function at the indicated point:
\[\frac{1}{\sqrt{x}}\]
\[\frac{x^2 + 1}{x}\]
k xn
(x + 2)3
(x2 + 1) (x − 5)
Differentiate each of the following from first principle:
\[\sqrt{\sin 2x}\]
Differentiate each of the following from first principle:
\[\frac{\sin x}{x}\]
Differentiate each of the following from first principle:
x2 sin x
Differentiate each of the following from first principle:
\[e^{x^2 + 1}\]
Differentiate each of the following from first principle:
\[a^\sqrt{x}\]
Differentiate each of the following from first principle:
\[3^{x^2}\]
\[\frac{x^3}{3} - 2\sqrt{x} + \frac{5}{x^2}\]
ex log a + ea long x + ea log a
\[\frac{( x^3 + 1)(x - 2)}{x^2}\]
a0 xn + a1 xn−1 + a2 xn−2 + ... + an−1 x + an.
\[\frac{(x + 5)(2 x^2 - 1)}{x}\]
\[\text{ If } y = \left( \frac{2 - 3 \cos x}{\sin x} \right), \text{ find } \frac{dy}{dx} at x = \frac{\pi}{4}\]
x3 sin x
xn tan x
xn loga x
(x3 + x2 + 1) sin x
\[\frac{2^x \cot x}{\sqrt{x}}\]
\[\frac{p x^2 + qx + r}{ax + b}\]
\[\frac{x^5 - \cos x}{\sin x}\]
\[\frac{ax + b}{p x^2 + qx + r}\]
If |x| < 1 and y = 1 + x + x2 + x3 + ..., then write the value of \[\frac{dy}{dx}\]
Mark the correct alternative in of the following:
If \[f\left( x \right) = \frac{x - 4}{2\sqrt{x}}\]
Mark the correct alternative in of the following:
If\[y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + . . .\]then \[\frac{dy}{dx} =\]
Mark the correct alternative in of the following:
If \[y = \frac{\sin\left( x + 9 \right)}{\cos x}\] then \[\frac{dy}{dx}\] at x = 0 is
Find the derivative of x2 cosx.
`(a + b sin x)/(c + d cos x)`
Let f(x) = x – [x]; ∈ R, then f'`(1/2)` is ______.